Skip to main content
Glama

context_save

Save context entries like conversations, code snippets, suggestions, or errors for project continuity across sessions. Organize with titles, content, and tags for easy retrieval.

Instructions

Save a new context entry for the current project

Input Schema

NameRequiredDescriptionDefault
typeYesContext type
titleYesContext title
contentYesContext content
tagsNoTags for categorization
session_context_idNoLink to existing context ID

Input Schema (JSON Schema)

{ "properties": { "content": { "description": "Context content", "type": "string" }, "session_context_id": { "description": "Link to existing context ID", "type": "string" }, "tags": { "description": "Tags for categorization", "items": { "type": "string" }, "type": "array" }, "title": { "description": "Context title", "type": "string" }, "type": { "description": "Context type", "enum": [ "conversation", "code", "suggestion", "error" ], "type": "string" } }, "required": [ "type", "title", "content" ], "type": "object" }

Implementation Reference

  • Executes the context_save tool: parses input arguments, constructs ContextContent and ContextEntry based on type, adds session info and optional link, then saves via storage.
    if name == "context_save": from models import ContextContent context_type = arguments["type"] title = arguments["title"] content_text = arguments["content"] tags = arguments.get("tags", []) session_context_id = arguments.get("session_context_id") # Parse content based on type if context_type == "conversation": content = ContextContent(messages=[content_text]) elif context_type == "code": content = ContextContent(code={"snippet": content_text}) elif context_type == "suggestion": content = ContextContent(suggestions=content_text) elif context_type == "error": content = ContextContent(errors=content_text) else: content = ContextContent(messages=[content_text]) # Create context entry with session info context = ContextEntry( type=context_type, title=title, content=content, tags=tags, project_path=os.getcwd(), session_id=self.session_id, session_timestamp=self.session_timestamp, ) # Link to session context if provided if session_context_id: context.metadata["session_context_id"] = session_context_id self.storage.save_context(context) return [TextContent(type="text", text=f"āœ“ Context saved (ID: {context.id})")]
  • Registers the context_save tool in list_tools() with name, description, and input schema defining required fields and options.
    Tool( name="context_save", description="Save a new context entry for the current project", inputSchema={ "type": "object", "properties": { "type": { "type": "string", "description": "Context type", "enum": ["conversation", "code", "suggestion", "error"], }, "title": {"type": "string", "description": "Context title"}, "content": {"type": "string", "description": "Context content"}, "tags": { "type": "array", "items": {"type": "string"}, "description": "Tags for categorization", }, "session_context_id": { "type": "string", "description": "Link to existing context ID", }, }, "required": ["type", "title", "content"], }, ),
  • JSON schema for input validation of context_save tool parameters.
    inputSchema={ "type": "object", "properties": { "type": { "type": "string", "description": "Context type", "enum": ["conversation", "code", "suggestion", "error"], }, "title": {"type": "string", "description": "Context title"}, "content": {"type": "string", "description": "Context content"}, "tags": { "type": "array", "items": {"type": "string"}, "description": "Tags for categorization", }, "session_context_id": { "type": "string", "description": "Link to existing context ID", }, }, "required": ["type", "title", "content"], },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taylorleese/mcp-toolz'

If you have feedback or need assistance with the MCP directory API, please join our Discord server