Social Media MCP Server

# Social Media MCP Server A Model Context Protocol (MCP) server that connects to multiple social media platforms, allowing users to create and publish content across platforms through natural language instructions. ## Features - **Natural Language Interface**: Create posts for multiple platforms with simple instructions - **Research Capabilities**: Automatically research hashtags, trends, facts, and news - **Multi-platform Support**: Post to Twitter/X, Mastodon, and LinkedIn with platform-specific formatting - **Content Generation**: Generate engaging content using multiple AI models - **Rate Limit Management**: Handle API rate limits gracefully with queuing and fallbacks - **Analytics**: Track post performance and optimize content strategy ## Getting Started ### Prerequisites - Node.js (v18+) - npm or yarn - API keys for: - Twitter/X - Mastodon - LinkedIn - OpenAI and/or Anthropic (for content generation) - Brave Search (for research) ### Installation 1. Clone the repository: ```bash git clone https://github.com/yourusername/social-media-mcp.git cd social-media-mcp ``` 2. Install dependencies: ```bash npm install ``` 3. Create a `.env` file with your API keys: ``` # Twitter API Credentials TWITTER_API_KEY=your_api_key TWITTER_API_SECRET=your_api_secret TWITTER_BEARER_TOKEN=your_bearer_token TWITTER_ACCESS_TOKEN=your_access_token TWITTER_ACCESS_SECRET=your_access_secret TWITTER_OAUTH_CLIENT=your_oauth_client TWITTER_CLIENT_SECRET=your_client_secret # Mastodon API Credentials MASTODON_CLIENT_SECRET=your_client_secret MASTODON_CLIENT_KEY=your_client_key MASTODON_ACCESS_TOKEN=your_access_token # LinkedIn API Credentials LINKEDIN_CLIENT_ID=your_client_id LINKEDIN_CLIENT_SECRET=your_client_secret LINKEDIN_ACCESS_TOKEN=your_access_token # AI API Keys ANTHROPIC_API_KEY=your_anthropic_key OPENAI_API_KEY=your_openai_key BRAVE_API_KEY=your_brave_key # Application Settings LOG_LEVEL=info CACHE_ENABLED=true RATE_LIMIT_ENABLED=true ``` 4. Build the project: ```bash npm run build ``` 5. Start the server: ```bash npm start ``` ### MCP Integration To use this MCP server with Claude or another MCP-compatible assistant, add it to your MCP settings: ```json { "mcpServers": { "social-media-mcp": { "command": "node", "args": ["path/to/social-media-mcp/build/index.js"], "env": { "TWITTER_API_KEY": "your_api_key", "TWITTER_API_SECRET": "your_api_secret", "TWITTER_BEARER_TOKEN": "your_bearer_token", "TWITTER_ACCESS_TOKEN": "your_access_token", "TWITTER_ACCESS_SECRET": "your_access_secret", "TWITTER_OAUTH_CLIENT": "your_oauth_client", "TWITTER_CLIENT_SECRET": "your_client_secret", "MASTODON_CLIENT_SECRET": "your_client_secret", "MASTODON_CLIENT_KEY": "your_client_key", "MASTODON_ACCESS_TOKEN": "your_access_token", "LINKEDIN_CLIENT_ID": "your_client_id", "LINKEDIN_CLIENT_SECRET": "your_client_secret", "LINKEDIN_ACCESS_TOKEN": "your_access_token", "ANTHROPIC_API_KEY": "your_anthropic_key", "OPENAI_API_KEY": "your_openai_key", "BRAVE_API_KEY": "your_brave_key" }, "disabled": false, "autoApprove": [] } } } ``` ## Available Tools ### create_post Create and post content to social media platforms based on natural language instructions. ```json { "instruction": "Post about the latest AI developments in healthcare", "platforms": ["twitter", "mastodon", "linkedin"], "postImmediately": false } ``` ### get_trending_topics Get trending topics from social media platforms. ```json { "platform": "twitter", "category": "technology", "count": 5 } ``` ### research_topic Research a topic using Brave Search and Perplexity. ```json { "topic": "artificial intelligence ethics", "includeHashtags": true, "includeFacts": true, "includeTrends": true, "includeNews": true } ``` ## Development ### Project Structure ``` social-media-mcp/ ├── src/ │ ├── index.ts # Entry point │ ├── config/ # Configuration │ ├── types/ # TypeScript type definitions │ ├── core/ # Core orchestration logic │ ├── nlp/ # Natural language processing │ ├── research/ # Research engine │ │ ├── brave/ # Brave Search integration │ │ ├── perplexity/ # Perplexity integration │ │ └── aggregator/ # Research result aggregation │ ├── content/ # Content generation │ │ ├── strategies/ # AI model strategies │ │ ├── formatter/ # Platform-specific formatting │ │ └── templates/ # Content templates │ ├── platforms/ # Social media platform integrations │ │ ├── twitter/ # Twitter API integration │ │ └── mastodon/ # Mastodon API integration │ ├── analytics/ # Analytics engine │ ├── rate-limit/ # Rate limit management │ └── utils/ # Utility functions ├── memory-bank/ # Project documentation ├── build/ # Compiled JavaScript ├── .env # Environment variables ├── package.json # Dependencies and scripts └── tsconfig.json # TypeScript configuration ``` ### Scripts - `npm run build`: Build the project - `npm run dev`: Run in development mode with hot reloading - `npm start`: Start the production server - `npm test`: Run tests - `npm run lint`: Run linting - `npm run format`: Format code ### Utility Scripts The `scripts` directory contains utility scripts for the Social Media MCP Server: - `scripts/linkedin-oauth.js`: Handles the OAuth 2.0 flow for LinkedIn to obtain an access token - Usage: `cd scripts && npm install && npm run linkedin-oauth` - See [scripts/README.md](scripts/README.md) for more details ### Documentation The `documentation` directory contains detailed documentation for each social media platform integration: - [Mastodon Integration](documentation/mastodon-integration.md) - [Twitter Integration](documentation/twitter-integration.md) - [LinkedIn Integration](documentation/linkedin-integration.md) - [Integration Summary](documentation/integration-summary.md) ## License This project is licensed under the ISC License. ## Acknowledgements - [Model Context Protocol](https://github.com/anthropics/model-context-protocol) - [Twitter API v2](https://developer.twitter.com/en/docs/twitter-api) - [Mastodon API](https://docs.joinmastodon.org/api/) - [LinkedIn API](https://learn.microsoft.com/en-us/linkedin/marketing/getting-started)