Skip to main content
Glama

Social Media MCP Server

by tayler-id
post-mcp-content-simple.js1.59 kB
// Simple script to post MCP content import fs from 'fs/promises'; // Define platform constants const TWITTER = 'twitter'; const MASTODON = 'mastodon'; const LINKEDIN = 'linkedin'; // Function to post content async function postMCPContent() { console.log('Starting MCP content posting...'); try { // Read the content file console.log('Reading MCP post content...'); const contentRaw = await fs.readFile('./mcp-post-content.json', 'utf-8'); const content = JSON.parse(contentRaw); // Log the content that would be posted console.log('\n=== TWITTER THREAD ==='); content.twitter.thread.forEach((tweet, index) => { console.log(`\nTweet ${index + 1}:`); console.log(tweet); }); console.log('\n=== MASTODON POST ==='); console.log(content.mastodon.post); console.log('\n=== LINKEDIN POST ==='); console.log(content.linkedin.post); console.log('\nContent successfully prepared for all platforms.'); console.log('To post this content, run the test-end-to-end.js script which will use mock implementations for Twitter and LinkedIn, and real posting for Mastodon if credentials are available.'); return { success: true, message: 'Content prepared for all platforms' }; } catch (error) { console.error('Error preparing MCP content', error); throw error; } } // Run the function postMCPContent().then(results => { console.log('\nResults:', JSON.stringify(results, null, 2)); }).catch(error => { console.error('Unhandled error:', error); process.exit(1); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tayler-id/social-media-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server