Skip to main content
Glama

Hyperliquid MCP Server

by t3rmed
Makefile1.96 kB
# Hyperliquid MCP Server Makefile .PHONY: help build run dev test clean install # Default target help: @echo "Available commands:" @echo " build - Build the Docker image" @echo " run - Run the container in production mode" @echo " dev - Run the container in development mode" @echo " test - Run tests" @echo " clean - Clean up Docker resources" @echo " install - Install dependencies with uv" @echo " lint - Run linting" @echo " format - Format code" # Build the Docker image build: docker-compose build hyperliquid-mcp # Run in production mode run: docker-compose up hyperliquid-mcp # Run in development mode with hot reloading dev: docker-compose --profile dev up hyperliquid-mcp-dev # Install dependencies locally install: uv sync # Run tests test: uv run pytest # Run tests with coverage test-cov: uv run pytest --cov=hyperliquid_mcp_server --cov-report=term-missing --cov-report=html # Run tests in verbose mode test-verbose: uv run pytest -v # Run specific test file test-file: uv run pytest $(FILE) -v # Lint code lint: uv run ruff check . uv run mypy . # Format code format: uv run black . uv run isort . uv run ruff --fix . # Clean up Docker resources clean: docker-compose down --rmi all --volumes --remove-orphans docker system prune -f # Run the server locally (without Docker) local: uv run python -m hyperliquid_mcp_server.main # Run HTTP server locally (REST-like endpoints) http: uv run python -m hyperliquid_mcp_server.http_server # Run MCP JSON-RPC server locally (for n8n and MCP clients) mcp: uv run python -m hyperliquid_mcp_server.mcp_http_server # Build and run up: build run # Build and run in dev mode dev-up: build dev # Stop all containers down: docker-compose down # View logs logs: docker-compose logs -f # Shell into the container shell: docker-compose exec hyperliquid-mcp /bin/bash # Update dependencies update: uv sync --upgrade

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/t3rmed/hyperliquid-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server