Skip to main content
Glama
embedding-utility.ts1.2 kB
/** * Embedding Utility - Backwards Compatibility Wrapper * Single responsibility: Bridge legacy callers to smart embedding manager */ import { SmartEmbeddingManager } from '../services/smart-embedding-manager'; // Types export type Vector = number[]; // Global instance for backwards compatibility let globalEmbeddingManager: SmartEmbeddingManager | null = null; function getGlobalEmbeddingManager(): SmartEmbeddingManager { if (!globalEmbeddingManager) { globalEmbeddingManager = new SmartEmbeddingManager(); } return globalEmbeddingManager; } /** * Calculate embedding for text input * @param text Input text to embed * @returns Vector representation (dimensions based on configured model) */ export async function calculateEmbedding(text: string): Promise<Vector> { const manager = getGlobalEmbeddingManager(); return manager.calculateEmbedding(text); } /** * Calculate similarity between two vectors * @param vec1 First vector * @param vec2 Second vector * @returns Cosine similarity (0-1) */ export function calculateSimilarity(vec1: Vector, vec2: Vector): number { const manager = getGlobalEmbeddingManager(); return manager.calculateSimilarity(vec1, vec2); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sylweriusz/mcp-neo4j-memory-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server