Skip to main content
Glama

Job URL Analyzer MCP Server

by subslink326
linkedin.py4.54 kB
"""LinkedIn enrichment provider.""" import asyncio import time from typing import Dict, Any, Optional import httpx from opentelemetry import trace from .base import EnrichmentProvider, EnrichmentResult from ..config import get_settings from ..metrics import ( ENRICHMENT_PROVIDER_SUCCESS, ENRICHMENT_PROVIDER_ERROR, ENRICHMENT_PROVIDER_DURATION, ) settings = get_settings() class LinkedInProvider(EnrichmentProvider): """Enrichment provider using LinkedIn API (mock implementation).""" def __init__(self): super().__init__("linkedin", enabled=settings.ENABLE_LINKEDIN) self.api_key = settings.LINKEDIN_API_KEY # Note: This is a mock implementation since LinkedIn's API # has strict terms of service regarding automated access def can_enrich(self, company_data: Dict[str, Any]) -> bool: """Check if we have enough data to search LinkedIn.""" if not self.enabled or not self.api_key: return False # Need company name or LinkedIn URL return bool( company_data.get("name") or company_data.get("linkedin_url") ) async def enrich(self, company_data: Dict[str, Any]) -> EnrichmentResult: """Mock LinkedIn enrichment.""" tracer = trace.get_tracer(__name__) with tracer.start_as_current_span("linkedin_enrich") as span: start_time = time.time() # Mock delay to simulate API call await asyncio.sleep(0.5) try: # Mock enriched data enriched_data = await self._mock_linkedin_data(company_data) processing_time_ms = int((time.time() - start_time) * 1000) confidence_score = self._calculate_confidence(company_data, enriched_data) ENRICHMENT_PROVIDER_SUCCESS.labels(provider=self.name).inc() ENRICHMENT_PROVIDER_DURATION.labels(provider=self.name).observe( (time.time() - start_time) ) span.set_attribute("success", True) span.set_attribute("confidence_score", confidence_score) self.logger.info( "LinkedIn enrichment completed (mock)", company_name=company_data.get("name"), enriched_fields=len(enriched_data), ) return EnrichmentResult( provider_name=self.name, success=True, data=enriched_data, confidence_score=confidence_score, processing_time_ms=processing_time_ms, ) except Exception as e: processing_time_ms = int((time.time() - start_time) * 1000) ENRICHMENT_PROVIDER_ERROR.labels(provider=self.name).inc() span.set_attribute("success", False) span.set_attribute("error", str(e)) return EnrichmentResult( provider_name=self.name, success=False, data={}, error_message=str(e), processing_time_ms=processing_time_ms, ) async def _mock_linkedin_data(self, company_data: Dict[str, Any]) -> Dict[str, Any]: """Generate mock LinkedIn data for testing.""" # In a real implementation, this would make actual LinkedIn API calls # following their terms of service and rate limits mock_data = {} # Mock some additional company details that LinkedIn might provide if company_data.get("name"): company_name = company_data["name"] # Mock LinkedIn URL if not present if not company_data.get("linkedin_url"): mock_data["linkedin_url"] = f"https://linkedin.com/company/{company_name.lower().replace(' ', '-')}" # Mock employee count if not present if not company_data.get("employee_count"): mock_data["employee_count_range"] = "201-500" # Mock industry if not present if not company_data.get("industry"): mock_data["industry"] = "Technology" return mock_data

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/subslink326/job-url-analyzer-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server