Skip to main content
Glama

get_person_profile

Retrieve structured LinkedIn profile data for a specific person by providing their username to access professional information.

Instructions

Get a specific person's LinkedIn profile.

Args: linkedin_username (str): LinkedIn username (e.g., "stickerdaniel", "anistji")

Returns: Dict[str, Any]: Structured data from the person's profile

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
linkedin_usernameYes

Implementation Reference

  • The handler function that executes the tool logic: constructs LinkedIn profile URL from username, scrapes data using linkedin_scraper.Person, transforms nested objects (experiences, educations, etc.) into structured dictionaries, and returns comprehensive profile information with error handling.
    async def get_person_profile(linkedin_username: str) -> Dict[str, Any]: """ Get a specific person's LinkedIn profile. Args: linkedin_username (str): LinkedIn username (e.g., "stickerdaniel", "anistji") Returns: Dict[str, Any]: Structured data from the person's profile """ try: # Construct clean LinkedIn URL from username linkedin_url = f"https://www.linkedin.com/in/{linkedin_username}/" driver = safe_get_driver() logger.info(f"Scraping profile: {linkedin_url}") person = Person(linkedin_url, driver=driver, close_on_complete=False) # Convert experiences to structured dictionaries experiences: List[Dict[str, Any]] = [ { "position_title": exp.position_title, "company": exp.institution_name, "from_date": exp.from_date, "to_date": exp.to_date, "duration": exp.duration, "location": exp.location, "description": exp.description, } for exp in person.experiences ] # Convert educations to structured dictionaries educations: List[Dict[str, Any]] = [ { "institution": edu.institution_name, "degree": edu.degree, "from_date": edu.from_date, "to_date": edu.to_date, "description": edu.description, } for edu in person.educations ] # Convert interests to list of titles interests: List[str] = [interest.title for interest in person.interests] # Convert accomplishments to structured dictionaries accomplishments: List[Dict[str, str]] = [ {"category": acc.category, "title": acc.title} for acc in person.accomplishments ] # Convert contacts to structured dictionaries contacts: List[Dict[str, str]] = [ { "name": contact.name, "occupation": contact.occupation, "url": contact.url, } for contact in person.contacts ] # Return the complete profile data return { "name": person.name, "about": person.about, "experiences": experiences, "educations": educations, "interests": interests, "accomplishments": accomplishments, "contacts": contacts, "company": person.company, "job_title": person.job_title, "open_to_work": getattr(person, "open_to_work", False), } except Exception as e: return handle_tool_error(e, "get_person_profile")
  • The @mcp.tool decorator within register_person_tools registers the get_person_profile handler with metadata annotations defining the tool's title and hints.
    @mcp.tool( annotations=ToolAnnotations( title="Get Person Profile", readOnlyHint=True, destructiveHint=False, openWorldHint=True, ) )
  • Top-level registration call to register_person_tools(mcp) in the create_mcp_server function, which defines and registers the get_person_profile tool.
    # Register all tools register_person_tools(mcp) register_company_tools(mcp) register_job_tools(mcp)
  • Function signature defining input schema (linkedin_username: str) and output type (Dict[str, Any]).
    async def get_person_profile(linkedin_username: str) -> Dict[str, Any]:
  • Lists 'get_person_profile' as a required tool in the generated Claude Desktop configuration.
    "requiredTools": [ "get_person_profile",

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/stickerdaniel/linkedin-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server