README.md•8.02 kB
# Qdrant MCP Server
A Model Context Protocol (MCP) server that provides semantic code search capabilities using Qdrant vector database and OpenAI embeddings.
## Features
- 🔍 **Semantic Code Search** - Find code by meaning, not just keywords
- 🚀 **Fast Indexing** - Efficient incremental indexing of large codebases
- 🤖 **MCP Integration** - Works seamlessly with Claude and other MCP clients
- 📊 **Background Monitoring** - Automatic reindexing of changed files
- 🎯 **Smart Filtering** - Respects .gitignore and custom patterns
- 💾 **Persistent Storage** - Embeddings stored in Qdrant for fast retrieval
## Installation
### Prerequisites
- Node.js 18+
- Python 3.8+
- Docker (for Qdrant) or Qdrant Cloud account
- OpenAI API key
### Quick Start
```bash
# Install the package
npm install -g @kindash/qdrant-mcp-server
# Or with pip
pip install qdrant-mcp-server
# Set up environment variables
export OPENAI_API_KEY="your-api-key"
export QDRANT_URL="http://localhost:6333" # or your Qdrant Cloud URL
export QDRANT_API_KEY="your-qdrant-api-key" # if using Qdrant Cloud
# Start Qdrant (if using Docker)
docker run -p 6333:6333 qdrant/qdrant
# Index your codebase
qdrant-indexer /path/to/your/code
# Start the MCP server
qdrant-mcp
```
## Configuration
### Environment Variables
Create a `.env` file in your project root:
```env
# Required
OPENAI_API_KEY=sk-...
# Qdrant Configuration
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY= # Optional, for Qdrant Cloud
QDRANT_COLLECTION_NAME=codebase # Default: codebase
# Indexing Configuration
MAX_FILE_SIZE=1048576 # Maximum file size to index (default: 1MB)
BATCH_SIZE=10 # Number of files to process in parallel
EMBEDDING_MODEL=text-embedding-3-small # OpenAI embedding model
# File Patterns
INCLUDE_PATTERNS=**/*.{js,ts,jsx,tsx,py,java,go,rs,cpp,c,h}
EXCLUDE_PATTERNS=**/node_modules/**,**/.git/**,**/dist/**
```
### MCP Configuration
Add to your Claude Desktop config (`~/.claude/config.json`):
```json
{
"mcpServers": {
"qdrant-search": {
"command": "qdrant-mcp",
"args": ["--collection", "my-codebase"],
"env": {
"OPENAI_API_KEY": "sk-...",
"QDRANT_URL": "http://localhost:6333"
}
}
}
}
```
## Usage
### Command Line Interface
```bash
# Index entire codebase
qdrant-indexer /path/to/code
# Index with custom patterns
qdrant-indexer /path/to/code --include "*.py" --exclude "tests/*"
# Index specific files
qdrant-indexer file1.js file2.py file3.ts
# Start background indexer
qdrant-control start
# Check indexer status
qdrant-control status
# Stop background indexer
qdrant-control stop
```
### In Claude
Once configured, you can use natural language queries:
- "Find all authentication code"
- "Show me files that handle user permissions"
- "What code is similar to the PaymentService class?"
- "Find all API endpoints related to users"
- "Show me error handling patterns in the codebase"
### Programmatic Usage
```python
from qdrant_mcp_server import QdrantIndexer, QdrantSearcher
# Initialize indexer
indexer = QdrantIndexer(
openai_api_key="sk-...",
qdrant_url="http://localhost:6333",
collection_name="my-codebase"
)
# Index files
indexer.index_directory("/path/to/code")
# Search
searcher = QdrantSearcher(
qdrant_url="http://localhost:6333",
collection_name="my-codebase"
)
results = searcher.search("authentication logic", limit=10)
for result in results:
print(f"{result.file_path}: {result.score}")
```
## Architecture
```
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Claude/MCP │────▶│ MCP Server │────▶│ Qdrant │
│ Client │ │ (Python) │ │ Vector DB │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ ▲
▼ │
┌──────────────────┐ │
│ OpenAI API │ │
│ (Embeddings) │──────────────┘
└──────────────────┘
```
## Advanced Configuration
### Custom File Processors
```python
from qdrant_mcp_server import FileProcessor
class MyCustomProcessor(FileProcessor):
def process(self, file_path: str, content: str) -> dict:
# Custom processing logic
return {
"content": processed_content,
"metadata": custom_metadata
}
# Register processor
indexer.register_processor(".myext", MyCustomProcessor())
```
### Embedding Models
Support for multiple embedding providers:
```python
# OpenAI (default)
indexer = QdrantIndexer(embedding_provider="openai")
# Cohere
indexer = QdrantIndexer(
embedding_provider="cohere",
cohere_api_key="..."
)
# Local models (upcoming)
indexer = QdrantIndexer(
embedding_provider="local",
model_path="/path/to/model"
)
```
## Performance Optimization
### Batch Processing
```bash
# Process files in larger batches (reduces API calls)
qdrant-indexer /path/to/code --batch-size 50
# Limit concurrent requests
qdrant-indexer /path/to/code --max-concurrent 5
```
### Incremental Indexing
```bash
# Only index changed files since last run
qdrant-indexer /path/to/code --incremental
# Force reindex of all files
qdrant-indexer /path/to/code --force
```
### Cost Estimation
```bash
# Estimate indexing costs before running
qdrant-indexer /path/to/code --dry-run
# Output:
# Files to index: 1,234
# Estimated tokens: 2,456,789
# Estimated cost: $0.43
```
## Monitoring
### Web UI (Coming Soon)
```bash
# Start monitoring dashboard
qdrant-mcp --web-ui --port 8080
```
### Logs
```bash
# View indexer logs
tail -f ~/.qdrant-mcp/logs/indexer.log
# View search queries
tail -f ~/.qdrant-mcp/logs/queries.log
```
### Metrics
- Files indexed
- Tokens processed
- Search queries per minute
- Average response time
- Cache hit rate
## Troubleshooting
### Common Issues
**"Connection refused" error**
- Ensure Qdrant is running: `docker ps`
- Check QDRANT_URL is correct
- Verify firewall settings
**"Rate limit exceeded" error**
- Reduce batch size: `--batch-size 5`
- Add delay between requests: `--delay 1000`
- Use a different OpenAI tier
**"Out of memory" error**
- Process fewer files at once
- Increase Node.js memory: `NODE_OPTIONS="--max-old-space-size=4096"`
- Use streaming mode for large files
### Debug Mode
```bash
# Enable verbose logging
qdrant-mcp --debug
# Test connectivity
qdrant-mcp --test-connection
# Validate configuration
qdrant-mcp --validate-config
```
## Contributing
We welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
### Development Setup
```bash
# Clone the repository
git clone https://github.com/kindash/qdrant-mcp-server
cd qdrant-mcp-server
# Install dependencies
npm install
pip install -e .
# Run tests
npm test
pytest
# Run linting
npm run lint
flake8 src/
```
## License
MIT License - see [LICENSE](LICENSE) for details.
## Acknowledgments
- Built for the [Model Context Protocol](https://github.com/anthropics/model-context-protocol)
- Powered by [Qdrant](https://qdrant.tech/) vector database
- Embeddings by [OpenAI](https://openai.com/)
- Originally developed for [KinDash](https://github.com/steiner385/KinDash)
## Support
- 📧 Email: support@kindash.app
- 💬 Discord: [Join our community](https://discord.gg/kindash)
- 🐛 Issues: [GitHub Issues](https://github.com/kindash/qdrant-mcp-server/issues)
- 📖 Docs: [Full Documentation](https://docs.kindash.app/qdrant-mcp)