Skip to main content
Glama

Qdrant MCP Server

by steiner385
README.md8.02 kB
# Qdrant MCP Server A Model Context Protocol (MCP) server that provides semantic code search capabilities using Qdrant vector database and OpenAI embeddings. ## Features - 🔍 **Semantic Code Search** - Find code by meaning, not just keywords - 🚀 **Fast Indexing** - Efficient incremental indexing of large codebases - 🤖 **MCP Integration** - Works seamlessly with Claude and other MCP clients - 📊 **Background Monitoring** - Automatic reindexing of changed files - 🎯 **Smart Filtering** - Respects .gitignore and custom patterns - 💾 **Persistent Storage** - Embeddings stored in Qdrant for fast retrieval ## Installation ### Prerequisites - Node.js 18+ - Python 3.8+ - Docker (for Qdrant) or Qdrant Cloud account - OpenAI API key ### Quick Start ```bash # Install the package npm install -g @kindash/qdrant-mcp-server # Or with pip pip install qdrant-mcp-server # Set up environment variables export OPENAI_API_KEY="your-api-key" export QDRANT_URL="http://localhost:6333" # or your Qdrant Cloud URL export QDRANT_API_KEY="your-qdrant-api-key" # if using Qdrant Cloud # Start Qdrant (if using Docker) docker run -p 6333:6333 qdrant/qdrant # Index your codebase qdrant-indexer /path/to/your/code # Start the MCP server qdrant-mcp ``` ## Configuration ### Environment Variables Create a `.env` file in your project root: ```env # Required OPENAI_API_KEY=sk-... # Qdrant Configuration QDRANT_URL=http://localhost:6333 QDRANT_API_KEY= # Optional, for Qdrant Cloud QDRANT_COLLECTION_NAME=codebase # Default: codebase # Indexing Configuration MAX_FILE_SIZE=1048576 # Maximum file size to index (default: 1MB) BATCH_SIZE=10 # Number of files to process in parallel EMBEDDING_MODEL=text-embedding-3-small # OpenAI embedding model # File Patterns INCLUDE_PATTERNS=**/*.{js,ts,jsx,tsx,py,java,go,rs,cpp,c,h} EXCLUDE_PATTERNS=**/node_modules/**,**/.git/**,**/dist/** ``` ### MCP Configuration Add to your Claude Desktop config (`~/.claude/config.json`): ```json { "mcpServers": { "qdrant-search": { "command": "qdrant-mcp", "args": ["--collection", "my-codebase"], "env": { "OPENAI_API_KEY": "sk-...", "QDRANT_URL": "http://localhost:6333" } } } } ``` ## Usage ### Command Line Interface ```bash # Index entire codebase qdrant-indexer /path/to/code # Index with custom patterns qdrant-indexer /path/to/code --include "*.py" --exclude "tests/*" # Index specific files qdrant-indexer file1.js file2.py file3.ts # Start background indexer qdrant-control start # Check indexer status qdrant-control status # Stop background indexer qdrant-control stop ``` ### In Claude Once configured, you can use natural language queries: - "Find all authentication code" - "Show me files that handle user permissions" - "What code is similar to the PaymentService class?" - "Find all API endpoints related to users" - "Show me error handling patterns in the codebase" ### Programmatic Usage ```python from qdrant_mcp_server import QdrantIndexer, QdrantSearcher # Initialize indexer indexer = QdrantIndexer( openai_api_key="sk-...", qdrant_url="http://localhost:6333", collection_name="my-codebase" ) # Index files indexer.index_directory("/path/to/code") # Search searcher = QdrantSearcher( qdrant_url="http://localhost:6333", collection_name="my-codebase" ) results = searcher.search("authentication logic", limit=10) for result in results: print(f"{result.file_path}: {result.score}") ``` ## Architecture ``` ┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ Claude/MCP │────▶│ MCP Server │────▶│ Qdrant │ │ Client │ │ (Python) │ │ Vector DB │ └─────────────────┘ └──────────────────┘ └─────────────────┘ │ ▲ ▼ │ ┌──────────────────┐ │ │ OpenAI API │ │ │ (Embeddings) │──────────────┘ └──────────────────┘ ``` ## Advanced Configuration ### Custom File Processors ```python from qdrant_mcp_server import FileProcessor class MyCustomProcessor(FileProcessor): def process(self, file_path: str, content: str) -> dict: # Custom processing logic return { "content": processed_content, "metadata": custom_metadata } # Register processor indexer.register_processor(".myext", MyCustomProcessor()) ``` ### Embedding Models Support for multiple embedding providers: ```python # OpenAI (default) indexer = QdrantIndexer(embedding_provider="openai") # Cohere indexer = QdrantIndexer( embedding_provider="cohere", cohere_api_key="..." ) # Local models (upcoming) indexer = QdrantIndexer( embedding_provider="local", model_path="/path/to/model" ) ``` ## Performance Optimization ### Batch Processing ```bash # Process files in larger batches (reduces API calls) qdrant-indexer /path/to/code --batch-size 50 # Limit concurrent requests qdrant-indexer /path/to/code --max-concurrent 5 ``` ### Incremental Indexing ```bash # Only index changed files since last run qdrant-indexer /path/to/code --incremental # Force reindex of all files qdrant-indexer /path/to/code --force ``` ### Cost Estimation ```bash # Estimate indexing costs before running qdrant-indexer /path/to/code --dry-run # Output: # Files to index: 1,234 # Estimated tokens: 2,456,789 # Estimated cost: $0.43 ``` ## Monitoring ### Web UI (Coming Soon) ```bash # Start monitoring dashboard qdrant-mcp --web-ui --port 8080 ``` ### Logs ```bash # View indexer logs tail -f ~/.qdrant-mcp/logs/indexer.log # View search queries tail -f ~/.qdrant-mcp/logs/queries.log ``` ### Metrics - Files indexed - Tokens processed - Search queries per minute - Average response time - Cache hit rate ## Troubleshooting ### Common Issues **"Connection refused" error** - Ensure Qdrant is running: `docker ps` - Check QDRANT_URL is correct - Verify firewall settings **"Rate limit exceeded" error** - Reduce batch size: `--batch-size 5` - Add delay between requests: `--delay 1000` - Use a different OpenAI tier **"Out of memory" error** - Process fewer files at once - Increase Node.js memory: `NODE_OPTIONS="--max-old-space-size=4096"` - Use streaming mode for large files ### Debug Mode ```bash # Enable verbose logging qdrant-mcp --debug # Test connectivity qdrant-mcp --test-connection # Validate configuration qdrant-mcp --validate-config ``` ## Contributing We welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines. ### Development Setup ```bash # Clone the repository git clone https://github.com/kindash/qdrant-mcp-server cd qdrant-mcp-server # Install dependencies npm install pip install -e . # Run tests npm test pytest # Run linting npm run lint flake8 src/ ``` ## License MIT License - see [LICENSE](LICENSE) for details. ## Acknowledgments - Built for the [Model Context Protocol](https://github.com/anthropics/model-context-protocol) - Powered by [Qdrant](https://qdrant.tech/) vector database - Embeddings by [OpenAI](https://openai.com/) - Originally developed for [KinDash](https://github.com/steiner385/KinDash) ## Support - 📧 Email: support@kindash.app - 💬 Discord: [Join our community](https://discord.gg/kindash) - 🐛 Issues: [GitHub Issues](https://github.com/kindash/qdrant-mcp-server/issues) - 📖 Docs: [Full Documentation](https://docs.kindash.app/qdrant-mcp)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/steiner385/qdrant-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server