---
title: fred_get_series
description: Retrieve time series data with transformations and aggregations
icon: 'chart-line'
---
# fred_get_series
Retrieve any FRED time series data by ID with support for data transformations, frequency changes, and custom date ranges.
## Overview
The `fred_get_series` tool is your primary interface for accessing actual economic data. It supports:
- Retrieving observations for any of the 800,000+ series
- Applying mathematical transformations (growth rates, percent changes)
- Converting between frequencies (daily to monthly, monthly to quarterly)
- Custom date ranges and vintage data
- Multiple aggregation methods
## Parameters
<ParamField path="series_id" type="string" required>
The FRED series ID to retrieve data for.
**Popular IDs:**
- `GDP`: Gross Domestic Product
- `UNRATE`: Unemployment Rate
- `CPIAUCSL`: Consumer Price Index
- `DFF`: Federal Funds Rate
- `SP500`: S&P 500 Index
**Finding IDs:**
Use `fred_search` or `fred_browse` to discover series IDs
</ParamField>
<ParamField path="observation_start" type="string">
Start date for observations in YYYY-MM-DD format.
**Examples:**
- `2024-01-01`: Start of 2024
- `2020-03-01`: Beginning of pandemic period
- `2008-09-01`: Start of financial crisis
**Default:** Series start date
</ParamField>
<ParamField path="observation_end" type="string">
End date for observations in YYYY-MM-DD format.
**Examples:**
- `2024-12-31`: End of 2024
- `2023-12-31`: Full year 2023
**Default:** Most recent available data
</ParamField>
<ParamField path="limit" type="number" default="100000">
Maximum number of observations to return (1-100000).
**Usage:**
- Small limits for recent data: `12` for last year of monthly data
- Large limits for historical analysis
</ParamField>
<ParamField path="offset" type="number" default="0">
Number of observations to skip from the beginning.
</ParamField>
<ParamField path="sort_order" type="string" default="asc">
Sort order of observations by date.
**Options:**
- `asc`: Chronological order (oldest first)
- `desc`: Reverse chronological (newest first)
</ParamField>
<ParamField path="units" type="string" default="lin">
Data transformation to apply.
**Options:**
- `lin`: Levels (no transformation) - raw values
- `chg`: Change from previous period
- `ch1`: Change from year ago
- `pch`: Percent change from previous period
- `pc1`: Percent change from year ago
- `pca`: Compounded annual rate of change
- `cch`: Continuously compounded rate of change
- `cca`: Continuously compounded annual rate
- `log`: Natural logarithm
**Common uses:**
- `pc1` for year-over-year inflation
- `pch` for month-over-month growth
- `log` for regression analysis
</ParamField>
<ParamField path="frequency" type="string">
Frequency aggregation/conversion.
**Main options:**
- `d`: Daily
- `w`: Weekly
- `bw`: Biweekly
- `m`: Monthly
- `q`: Quarterly
- `sa`: Semiannual
- `a`: Annual
**Weekly variants:**
- `wef`: Week Ending Friday
- `weth`: Week Ending Thursday
- `wew`: Week Ending Wednesday
- `wetu`: Week Ending Tuesday
- `wem`: Week Ending Monday
- `wesu`: Week Ending Sunday
- `wesa`: Week Ending Saturday
**Default:** Native series frequency
</ParamField>
<ParamField path="aggregation_method" type="string" default="avg">
Method for aggregating to lower frequencies.
**Options:**
- `avg`: Average over period
- `sum`: Sum of values in period
- `eop`: End of period value
**Usage examples:**
- `avg` for interest rates, prices
- `sum` for flows like GDP, sales
- `eop` for stock prices, levels
</ParamField>
<ParamField path="output_type" type="number" default="1">
Output format type.
**Options:**
- `1`: Time series observations
- `2`: Observations by vintage date
- `3`: Observations by release date
- `4`: Initial release only
**Note:** Types 2-4 for vintage analysis
</ParamField>
<ParamField path="vintage_dates" type="string">
Specific vintage date(s) in YYYY-MM-DD format.
**Usage:**
- Single date: `2024-01-01`
- Date range: `2024-01-01:2024-12-31`
**Purpose:** Retrieve data as it existed on specific dates
</ParamField>
## Examples
### Basic Series Retrieval
<CodeGroup>
```json Request
{
"tool": "fred_get_series",
"params": {
"series_id": "UNRATE",
"limit": 12
}
}
```
```json Response
{
"series": {
"id": "UNRATE",
"title": "Unemployment Rate",
"units": "Percent",
"frequency": "Monthly",
"seasonal_adjustment": "Seasonally Adjusted"
},
"observations": [
{"date": "2024-01-01", "value": 3.7},
{"date": "2024-02-01", "value": 3.9},
{"date": "2024-03-01", "value": 3.8},
{"date": "2024-04-01", "value": 3.9},
{"date": "2024-05-01", "value": 4.0},
{"date": "2024-06-01", "value": 4.0},
{"date": "2024-07-01", "value": 4.3},
{"date": "2024-08-01", "value": 4.2},
{"date": "2024-09-01", "value": 4.1},
{"date": "2024-10-01", "value": 4.1},
{"date": "2024-11-01", "value": 4.2},
{"date": "2024-12-01", "value": 4.2}
],
"metadata": {
"count": 12,
"observation_start": "2024-01-01",
"observation_end": "2024-12-01"
}
}
```
</CodeGroup>
### Year-over-Year Inflation
<CodeGroup>
```json Request
{
"tool": "fred_get_series",
"params": {
"series_id": "CPIAUCSL",
"units": "pc1",
"observation_start": "2024-01-01",
"limit": 12
}
}
```
```json Response
{
"series": {
"id": "CPIAUCSL",
"title": "Consumer Price Index for All Urban Consumers",
"units": "Percent Change from Year Ago",
"transformation": "pc1"
},
"observations": [
{"date": "2024-01-01", "value": 3.1},
{"date": "2024-02-01", "value": 3.2},
{"date": "2024-03-01", "value": 3.5},
{"date": "2024-04-01", "value": 3.4},
{"date": "2024-05-01", "value": 3.3},
{"date": "2024-06-01", "value": 3.0},
{"date": "2024-07-01", "value": 2.9},
{"date": "2024-08-01", "value": 2.5},
{"date": "2024-09-01", "value": 2.4},
{"date": "2024-10-01", "value": 2.6},
{"date": "2024-11-01", "value": 2.7},
{"date": "2024-12-01", "value": 2.9}
]
}
```
</CodeGroup>
### Quarterly GDP Growth
<CodeGroup>
```json Request
{
"tool": "fred_get_series",
"params": {
"series_id": "GDPC1",
"units": "pca",
"observation_start": "2023-01-01",
"observation_end": "2024-12-31"
}
}
```
```json Response
{
"series": {
"id": "GDPC1",
"title": "Real Gross Domestic Product",
"units": "Compounded Annual Rate of Change",
"frequency": "Quarterly"
},
"observations": [
{"date": "2023-01-01", "value": 2.2},
{"date": "2023-04-01", "value": 2.1},
{"date": "2023-07-01", "value": 4.9},
{"date": "2023-10-01", "value": 3.4},
{"date": "2024-01-01", "value": 1.6},
{"date": "2024-04-01", "value": 3.0},
{"date": "2024-07-01", "value": 2.8},
{"date": "2024-10-01", "value": 2.5}
]
}
```
</CodeGroup>
### Convert Daily to Monthly
<CodeGroup>
```json Request
{
"tool": "fred_get_series",
"params": {
"series_id": "DFF",
"frequency": "m",
"aggregation_method": "avg",
"observation_start": "2024-01-01",
"limit": 12
}
}
```
```json Response
{
"series": {
"id": "DFF",
"title": "Federal Funds Effective Rate",
"original_frequency": "Daily",
"requested_frequency": "Monthly",
"aggregation": "Average"
},
"observations": [
{"date": "2024-01-01", "value": 5.33},
{"date": "2024-02-01", "value": 5.33},
{"date": "2024-03-01", "value": 5.33},
{"date": "2024-04-01", "value": 5.33},
{"date": "2024-05-01", "value": 5.33},
{"date": "2024-06-01", "value": 5.33},
{"date": "2024-07-01", "value": 5.33},
{"date": "2024-08-01", "value": 5.33},
{"date": "2024-09-01", "value": 5.08},
{"date": "2024-10-01", "value": 4.83},
{"date": "2024-11-01", "value": 4.58},
{"date": "2024-12-01", "value": 4.33}
]
}
```
</CodeGroup>
## Common Use Cases
### Economic Dashboard
```json
// GDP Growth (Quarterly)
{
"series_id": "GDPC1",
"units": "pca",
"limit": 8
}
// Unemployment Rate (Monthly)
{
"series_id": "UNRATE",
"limit": 24
}
// Inflation Rate (Monthly YoY)
{
"series_id": "CPIAUCSL",
"units": "pc1",
"limit": 24
}
// Federal Funds Rate (Daily)
{
"series_id": "DFF",
"limit": 30
}
```
### Historical Analysis
```json
// Long-term GDP growth
{
"series_id": "GDPC1",
"units": "pc1",
"observation_start": "1950-01-01",
"frequency": "a"
}
// Unemployment during recessions
{
"series_id": "UNRATE",
"observation_start": "2007-01-01",
"observation_end": "2010-12-31"
}
// Inflation in the 1970s
{
"series_id": "CPIAUCSL",
"units": "pc1",
"observation_start": "1970-01-01",
"observation_end": "1979-12-31"
}
```
### Financial Market Indicators
```json
// 10-Year Treasury Yield
{
"series_id": "DGS10",
"limit": 252 // ~1 year of trading days
}
// Yield Curve (10Y-2Y Spread)
// Requires two calls and calculation
{
"series_id": "T10Y2Y",
"limit": 252
}
// S&P 500 Monthly Returns
{
"series_id": "SP500",
"units": "pch",
"frequency": "m",
"aggregation_method": "eop"
}
```
## Transformation Examples
### Growth Rate Calculations
<Tabs>
<Tab title="Month-over-Month">
```json
{
"series_id": "PAYEMS",
"units": "chg",
"limit": 12
}
```
Returns absolute change from previous month
</Tab>
<Tab title="Quarter-over-Quarter">
```json
{
"series_id": "GDPC1",
"units": "pch",
"limit": 8
}
```
Returns percent change from previous quarter
</Tab>
<Tab title="Year-over-Year">
```json
{
"series_id": "CPIAUCSL",
"units": "pc1",
"limit": 24
}
```
Returns percent change from same period last year
</Tab>
<Tab title="Annualized Rate">
```json
{
"series_id": "GDPC1",
"units": "pca",
"limit": 8
}
```
Returns compounded annual rate of change
</Tab>
</Tabs>
### Frequency Conversions
<Tabs>
<Tab title="Daily to Monthly">
```json
{
"series_id": "DFF",
"frequency": "m",
"aggregation_method": "avg"
}
```
Average daily values into monthly
</Tab>
<Tab title="Monthly to Quarterly">
```json
{
"series_id": "CPIAUCSL",
"frequency": "q",
"aggregation_method": "avg"
}
```
Average monthly values into quarterly
</Tab>
<Tab title="Monthly to Annual">
```json
{
"series_id": "UNRATE",
"frequency": "a",
"aggregation_method": "avg"
}
```
Average monthly values into annual
</Tab>
<Tab title="Daily to Weekly">
```json
{
"series_id": "DEXUSEU",
"frequency": "wef",
"aggregation_method": "eop"
}
```
Week-ending Friday values
</Tab>
</Tabs>
## Popular Series Reference
### Key Economic Indicators
| Series ID | Description | Frequency | Common Transform |
|-----------|-------------|-----------|------------------|
| GDP | Nominal GDP | Quarterly | `units: "pch"` |
| GDPC1 | Real GDP | Quarterly | `units: "pca"` |
| UNRATE | Unemployment Rate | Monthly | None (already %) |
| PAYEMS | Nonfarm Payrolls | Monthly | `units: "chg"` |
| CPIAUCSL | CPI All Urban | Monthly | `units: "pc1"` |
| CPILFESL | Core CPI | Monthly | `units: "pc1"` |
| PCEPI | PCE Price Index | Monthly | `units: "pc1"` |
### Interest Rates
| Series ID | Description | Frequency | Notes |
|-----------|-------------|-----------|-------|
| DFF | Fed Funds Effective | Daily | Current policy rate |
| DGS10 | 10-Year Treasury | Daily | Long-term rate |
| DGS2 | 2-Year Treasury | Daily | Short-term rate |
| TB3MS | 3-Month T-Bill | Monthly | Risk-free rate |
| MORTGAGE30US | 30-Year Mortgage | Weekly | Consumer rate |
### Market Indicators
| Series ID | Description | Frequency | Transform for Returns |
|-----------|-------------|-----------|----------------------|
| SP500 | S&P 500 Index | Daily | `units: "pch"` |
| DJIA | Dow Jones | Daily | `units: "pch"` |
| NASDAQCOM | NASDAQ Composite | Daily | `units: "pch"` |
| VIXCLS | VIX Volatility | Daily | None |
| DEXUSEU | EUR/USD Exchange | Daily | `units: "pch"` |
## Error Handling
### Common Errors
| Error | Cause | Solution |
|-------|-------|----------|
| `Invalid series ID` | Series doesn't exist | Use fred_search to find correct ID |
| `No data in range` | Date range has no data | Check series start/end dates |
| `Invalid transformation` | Transform not applicable | Some transforms need positive values |
| `Frequency conversion error` | Can't convert to requested frequency | Check if conversion makes sense |
### Validation Rules
<Warning>
**Important constraints:**
- Dates must be in YYYY-MM-DD format
- observation_start must be ≤ observation_end
- Some transformations require positive values
- Not all frequency conversions are valid
</Warning>
## Best Practices
<Steps>
<Step title="Know Your Data">
Check series metadata (frequency, units, seasonal adjustment) before retrieval
</Step>
<Step title="Use Appropriate Transforms">
Match transformation to analysis needs (growth rates for trends, logs for regression)
</Step>
<Step title="Consider Frequency">
Align data frequencies when comparing multiple series
</Step>
<Step title="Handle Missing Data">
Some series have gaps; check for null values in observations
</Step>
<Step title="Plan Queries Carefully">
Think through data needs to minimize redundant requests
</Step>
</Steps>
## Related Tools
<CardGroup cols={2}>
<Card
title="fred_search"
icon="magnifying-glass"
href="/api-reference/fred-search"
>
Find series IDs to retrieve
</Card>
<Card
title="fred_browse"
icon="folder-tree"
href="/api-reference/fred-browse"
>
Explore available categories
</Card>
</CardGroup>