Skip to main content
Glama

Sourcerer MCP

by st3v3nmw
README.md3.15 kB
# Sourcerer MCP 🧙 An MCP server for semantic code search & navigation that helps AI agents work efficiently without burning through costly tokens. Instead of reading entire files, agents can search conceptually and jump directly to the specific functions, classes, and code chunks they need. ## Demo [![asciicast](https://asciinema.org/a/736638.svg)](https://asciinema.org/a/736638) ## Requirements - **OpenAI API Key**: Required for generating embeddings (local embedding support planned) - **Git**: Must be a git repository (respects `.gitignore` files) - **Add `.sourcerer/` to `.gitignore`**: This directory stores the embedded vector database ## Installation ### Go ```shell go install github.com/st3v3nmw/sourcerer-mcp/cmd/sourcerer@latest ``` ### Homebrew ```shell brew tap st3v3nmw/tap brew install st3v3nmw/tap/sourcerer ``` ## Configuration ### Claude Code ```shell claude mcp add sourcerer -e OPENAI_API_KEY=your-openai-api-key -e SOURCERER_WORKSPACE_ROOT=$(pwd) -- sourcerer ``` ### mcp.json ```json { "mcpServers": { "sourcerer": { "command": "sourcerer", "env": { "OPENAI_API_KEY": "your-openai-api-key", "SOURCERER_WORKSPACE_ROOT": "/path/to/your/project" } } } } ``` ## How it Works Sourcerer 🧙 builds a semantic search index of your codebase: ### 1. Code Parsing & Chunking - Uses [Tree-sitter](https://tree-sitter.github.io/tree-sitter/) to parse source files into ASTs - Extracts meaningful chunks (functions, classes, methods, types) with stable IDs - Each chunk includes source code, location info, and contextual summaries - Chunk IDs follow the format: `file.ext::Type::method` ### 2. File System Integration - Watches for file changes using `fsnotify` - Respects `.gitignore` files via `git check-ignore` - Automatically re-indexes changed files - Stores metadata to track modification times ### 3. Vector Database - Uses [chromem-go](https://github.com/philippgille/chromem-go) for persistent vector storage in `.sourcerer/db/` - Generates embeddings via OpenAI's API for semantic similarity - Enables conceptual search rather than just text matching - Maintains chunks, their embeddings, and metadata ### 4. MCP Tools - `semantic_search`: Find relevant code using semantic search - `get_chunk_code`: Retrieve specific chunks by ID - `find_similar_chunks`: Find similar chunks - `index_workspace`: Manually trigger re-indexing - `get_index_status`: Check indexing progress This approach allows AI agents to find relevant code without reading entire files, dramatically reducing token usage and cognitive load. ## Supported Languages Language support requires writing [Tree-sitter queries](https://github.com/st3v3nmw/sourcerer-mcp/blob/main/internal/parser/go.go) to identify functions, classes, interfaces, and other code structures for each language. **Supported:** Go, JavaScript, Markdown, Python, TypeScript **Planned:** C, C++, Java, Ruby, Rust, and others ## Contributing All contributions welcome! See [CONTRIBUTING.md](CONTRIBUTING.md). ``` $ ls @stephenmwangi.com - gh:st3v3nmw/obsidian-spaced-repetition - gh:st3v3nmw/lsfr ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/st3v3nmw/sourcerer-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server