openapi: 3.0.3
info:
title: Multi-Agent Orchestrator MCP Server - Revolutionary Edition
description: |
**🚀 REVOLUTIONARY MULTI-AGENT ORCHESTRATOR MCP SERVER 🚀**
A cutting-edge Model Context Protocol (MCP) server featuring **5 LEGENDARY AI AGENTS** that transform software development through autonomous intelligence and revolutionary capabilities.
**🌟 LEGENDARY AGENTS:**
1. **🏗️ Autonomous Architect Agent** - Self-evolving system architecture with dynamic DAG generation
2. **🛡️ Proactive Quality Framework** - Policy-as-code quality assurance with predictive analysis
3. **🧬 Evolutionary Prompt Engine** - Self-improving prompts with genetic algorithms
4. **☁️ Last Mile Cloud Agent** - Autonomous deployment across AWS, Azure, GCP with verification
5. **🎯 Legendary Application Generator** - Orchestrates all agents for revolutionary app creation
**🔥 REVOLUTIONARY FEATURES:**
- 🤖 Multi-Agent System (Frontend, Backend, DevOps, Reviewer + 4 Legendary Agents)
- 🔄 Autonomous Self-Healing with LLM-powered failure analysis and auto-recovery
- 🔐 Descope OAuth 2.1 + PKCE Authentication with Non-Human Identity support
- 📊 Cequence AI Gateway Integration for real-time analytics and security monitoring
- 🛠️ Full MCP Protocol Compliance (JSON-RPC 2.0) with legendary tool extensions
- 🚀 Revolutionary Code Generation with architectural evolution and quality policies
- 🧠 Self-Improving Intelligence through evolutionary prompt optimization
- ☁️ Multi-Cloud Deployment Automation with autonomous verification
**💡 COMPETITION INNOVATION:**
This MCP server represents the pinnacle of autonomous software development by introducing revolutionary AI agents that not only generate applications but continuously evolve their own capabilities. The system demonstrates true intelligence through self-improvement, predictive quality assurance, and autonomous cloud orchestration.
version: 3.0.0-LEGENDARY
contact:
name: Revolutionary AI Systems
url: https://github.com/yoriichi-07/Multi_Orchestrator_MCP
email: legendary@ai-systems.dev
license:
name: MIT Revolutionary License
url: https://opensource.org/licenses/MIT
servers:
- url: https://server.smithery.ai/@yoriichi-07/multi_orchestrator_mcp/mcp
description: Production server on Smithery (revolutionary competition deployment)
- url: http://localhost:8080
description: Local development server with legendary capabilities
security:
- DescopeBearer: []
paths:
# === LEGENDARY TOOLS - REVOLUTIONARY CAPABILITIES ===
/mcp/v3/legendary/generate_application:
post:
summary: 🎯 Legendary Application Generator
description: |
**🚀 REVOLUTIONARY APPLICATION GENERATION**
The ultimate autonomous application generator that orchestrates all 4 legendary agents plus the core multi-agent system to create revolutionary applications with:
- **Autonomous Architecture**: Self-evolving system design with dynamic DAG optimization
- **Proactive Quality**: Policy-as-code with predictive issue prevention
- **Evolutionary Prompts**: Self-improving generation through genetic algorithms
- **Cloud-Native Deployment**: Multi-cloud autonomous deployment with verification
- **Continuous Evolution**: Applications that improve themselves over time
This represents the pinnacle of autonomous software development.
tags: [🌟 Legendary Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/LegendaryGenerateApplicationRequest'
responses:
'200':
description: Revolutionary application generated with legendary capabilities
content:
application/json:
schema:
$ref: '#/components/schemas/LegendaryGenerateApplicationResponse'
/mcp/v3/legendary/autonomous_architect:
post:
summary: 🏗️ Autonomous Architect Agent
description: |
**🏗️ SELF-EVOLVING ARCHITECTURAL INTELLIGENCE**
The Autonomous Architect Agent creates and evolves system architectures using:
- **Dynamic DAG Generation**: Creates optimal dependency graphs that adapt to requirements
- **Architectural Evolution**: Continuously improves designs based on performance feedback
- **Pattern Recognition**: Learns from successful architectures to optimize future designs
- **Constraint Optimization**: Balances performance, cost, and maintainability automatically
- **Future-Proofing**: Designs systems that adapt to changing requirements
This agent represents autonomous architectural intelligence that surpasses human capabilities.
tags: [🌟 Legendary Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/AutonomousArchitectRequest'
responses:
'200':
description: Revolutionary architecture generated with evolutionary capabilities
content:
application/json:
schema:
$ref: '#/components/schemas/AutonomousArchitectResponse'
/mcp/v3/legendary/proactive_quality_assurance:
post:
summary: 🛡️ Proactive Quality Framework
description: |
**🛡️ PREDICTIVE QUALITY INTELLIGENCE**
The Proactive Quality Framework revolutionizes software quality through:
- **Policy-as-Code**: Automated quality policies that evolve with codebase
- **Predictive Analysis**: Identifies potential issues before they manifest
- **Continuous Improvement**: Learns from past issues to prevent future problems
- **Multi-Dimensional Quality**: Security, performance, maintainability, and innovation metrics
- **Autonomous Remediation**: Automatically applies fixes based on policy violations
This framework ensures legendary quality that improves autonomously over time.
tags: [🌟 Legendary Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/ProactiveQualityRequest'
responses:
'200':
description: Comprehensive quality analysis with proactive recommendations
content:
application/json:
schema:
$ref: '#/components/schemas/ProactiveQualityResponse'
/mcp/v3/legendary/evolutionary_prompt_optimization:
post:
summary: 🧬 Evolutionary Prompt Engine
description: |
**🧬 SELF-IMPROVING PROMPT INTELLIGENCE**
The Evolutionary Prompt Engine creates and evolves prompts using:
- **Genetic Algorithms**: Evolves prompts through selection, crossover, and mutation
- **Performance Feedback**: Learns from execution results to improve effectiveness
- **Multi-Objective Optimization**: Balances accuracy, creativity, and efficiency
- **Adaptive Learning**: Adjusts strategies based on domain and context
- **Continuous Evolution**: Prompts become more effective over time autonomously
This engine demonstrates true AI self-improvement capabilities.
tags: [🌟 Legendary Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/EvolutionaryPromptRequest'
responses:
'200':
description: Optimized prompts with evolutionary improvements
content:
application/json:
schema:
$ref: '#/components/schemas/EvolutionaryPromptResponse'
/mcp/v3/legendary/last_mile_cloud_deployment:
post:
summary: ☁️ Last Mile Cloud Agent
description: |
**☁️ AUTONOMOUS MULTI-CLOUD ORCHESTRATION**
The Last Mile Cloud Agent provides revolutionary cloud deployment through:
- **Multi-Cloud Intelligence**: Automatically selects optimal cloud providers and regions
- **Autonomous Verification**: Validates deployments and performance automatically
- **Cost Optimization**: Dynamically optimizes cloud resources for minimum cost
- **Zero-Downtime Deployments**: Ensures continuous availability during updates
- **Self-Healing Infrastructure**: Automatically recovers from infrastructure failures
This agent transforms cloud deployment into an autonomous, intelligent process.
tags: [🌟 Legendary Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/LastMileCloudRequest'
responses:
'200':
description: Autonomous cloud deployment with multi-provider orchestration
content:
application/json:
schema:
$ref: '#/components/schemas/LastMileCloudResponse'
# === CORE MCP PROTOCOL ENDPOINTS ===
/health:
get:
summary: Health Check with Legendary Status
description: Enhanced health check including legendary agent status and revolutionary capabilities
tags: [Health & Status]
security: []
responses:
'200':
description: Server is healthy with legendary capabilities active
content:
application/json:
schema:
$ref: '#/components/schemas/HealthResponse'
/mcp/initialize:
post:
summary: MCP Initialization with Legendary Capabilities
description: Initialize MCP client-server connection with legendary agent capability negotiation
tags: [MCP Protocol]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/MCPInitializeRequest'
responses:
'200':
description: Initialization successful with legendary capabilities enabled
content:
application/json:
schema:
$ref: '#/components/schemas/MCPInitializeResponse'
/mcp/tools/list:
post:
summary: List All MCP Tools (Including Legendary)
description: Get comprehensive list of all available MCP tools including legendary agents
tags: [MCP Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/MCPListRequest'
responses:
'200':
description: Complete list of tools including legendary capabilities
content:
application/json:
schema:
$ref: '#/components/schemas/MCPToolsListResponse'
/mcp/tools/call:
post:
summary: Execute MCP Tool (Core + Legendary)
description: Execute any MCP tool including legendary agents with full capability support
tags: [MCP Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/MCPToolCallRequest'
responses:
'200':
description: Tool execution result with legendary enhancement
content:
application/json:
schema:
$ref: '#/components/schemas/MCPToolCallResponse'
# === CORE AGENT TOOLS ===
/mcp/v1/tools/orchestrate_task:
post:
summary: Multi-Agent Task Orchestration
description: Orchestrate complex tasks across multiple specialized AI agents
tags: [Core Agent Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/OrchestateTaskRequest'
responses:
'200':
description: Task orchestrated successfully across agents
content:
application/json:
schema:
$ref: '#/components/schemas/OrchestateTaskResponse'
/mcp/v1/tools/generate_architecture:
post:
summary: AI-Powered Architecture Generation
description: Generate comprehensive system architecture using AI analysis
tags: [Core Agent Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/GenerateArchitectureRequest'
responses:
'200':
description: Architecture generated successfully
content:
application/json:
schema:
$ref: '#/components/schemas/GenerateArchitectureResponse'
/mcp/v1/tools/auto_fix_code:
post:
summary: Autonomous Code Fixing
description: Automatically fix code issues using self-healing capabilities
tags: [Core Agent Tools]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/AutoFixCodeRequest'
responses:
'200':
description: Code fixed successfully
content:
application/json:
schema:
$ref: '#/components/schemas/AutoFixCodeResponse'
# === INFRASTRUCTURE TOOLS ===
/mcp/v1/tools/ping:
post:
summary: Enhanced Connectivity Test
description: Advanced ping with scope validation and legendary status
tags: [Infrastructure]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/PingRequest'
responses:
'200':
description: Ping successful with enhanced information
content:
application/json:
schema:
$ref: '#/components/schemas/PingResponse'
/mcp/v1/tools/get_system_status:
post:
summary: Comprehensive System Status
description: Detailed system status including legendary agents and revolutionary metrics
tags: [Infrastructure]
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/SystemStatusRequest'
responses:
'200':
description: Comprehensive system status with legendary insights
content:
application/json:
schema:
$ref: '#/components/schemas/SystemStatusResponse'
/mcp/v1/tools/list_capabilities:
post:
summary: List All System Capabilities
description: Comprehensive list of all system capabilities including legendary features
tags: [Infrastructure]
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
include_legendary:
type: boolean
default: true
responses:
'200':
description: Complete capability list
content:
application/json:
schema:
$ref: '#/components/schemas/CapabilitiesResponse'
# === ANALYTICS & MONITORING ===
/dashboard/legendary:
get:
summary: Legendary Analytics Dashboard
description: Advanced Cequence AI Gateway analytics dashboard with legendary agent metrics
tags: [Analytics & Monitoring]
responses:
'200':
description: Enhanced analytics dashboard with legendary insights
content:
text/html:
schema:
type: string
components:
securitySchemes:
DescopeBearer:
type: http
scheme: bearer
bearerFormat: JWT
description: |
Descope OAuth 2.1 + PKCE JWT token with Non-Human Identity support for revolutionary capabilities.
**Required Scopes for Legendary Tools:**
- `legendary:architect` - Autonomous architecture generation and evolution
- `legendary:quality` - Proactive quality assurance and policy management
- `legendary:prompts` - Evolutionary prompt optimization and self-improvement
- `legendary:cloud` - Last mile cloud deployment and multi-provider orchestration
- `legendary:generate` - Complete revolutionary application generation
- `tools:*` - All core MCP tools
- `admin:*` - Administrative and monitoring capabilities
schemas:
# === LEGENDARY TOOL SCHEMAS ===
LegendaryGenerateApplicationRequest:
type: object
required:
- description
properties:
description:
type: string
description: Detailed description of the revolutionary application to create
example: "Create a next-generation social media platform with AI-powered content curation, real-time collaboration, and autonomous scaling"
complexity_level:
type: string
enum: [simple, advanced, enterprise, revolutionary]
default: revolutionary
description: Target complexity level for the application
innovation_requirements:
type: array
items:
type: string
example: ["AI-powered UX", "autonomous scaling", "predictive analytics", "self-healing infrastructure"]
description: List of innovative features to include
deployment_strategy:
type: string
enum: [local, cloud-native, multi-cloud, edge, revolutionary]
default: revolutionary
description: Deployment approach with autonomous optimization
evolutionary_goals:
type: array
items:
type: string
example: ["continuous self-improvement", "adaptive user experience", "autonomous feature development"]
description: Long-term evolutionary goals for the application
quality_policies:
type: object
properties:
security_level:
type: string
enum: [standard, high, revolutionary]
default: revolutionary
performance_targets:
type: object
properties:
response_time_ms:
type: integer
example: 50
throughput_rps:
type: integer
example: 10000
maintainability_score:
type: number
format: float
minimum: 8.0
maximum: 10.0
example: 9.5
LegendaryGenerateApplicationResponse:
type: object
properties:
success:
type: boolean
example: true
revolutionary_features:
type: array
items:
type: string
example: ["autonomous architecture evolution", "predictive quality assurance", "self-improving prompts", "multi-cloud orchestration"]
autonomous_architecture:
type: object
properties:
dag_structure:
type: object
description: Dynamic dependency graph structure
optimization_metrics:
type: object
properties:
performance_score:
type: number
format: float
example: 9.7
maintainability_score:
type: number
format: float
example: 9.3
innovation_score:
type: number
format: float
example: 9.8
proactive_quality_policies:
type: array
items:
type: object
properties:
policy_name:
type: string
example: "security_predictive_analysis"
enforcement_level:
type: string
enum: [warning, error, blocking]
success_rate:
type: number
format: float
example: 0.95
evolutionary_prompts:
type: object
properties:
generation_1_prompts:
type: integer
example: 50
optimized_prompts:
type: integer
example: 127
improvement_factor:
type: number
format: float
example: 2.54
cloud_deployment_plan:
type: object
properties:
primary_provider:
type: string
example: "AWS"
fallback_providers:
type: array
items:
type: string
example: ["Azure", "GCP"]
deployment_regions:
type: array
items:
type: string
example: ["us-east-1", "eu-west-1", "asia-pacific-1"]
estimated_cost_monthly:
type: number
format: float
example: 2847.50
execution_timeline:
type: object
properties:
total_duration_minutes:
type: integer
example: 45
phases:
type: array
items:
type: object
properties:
phase:
type: string
example: "autonomous_architecture"
duration_minutes:
type: integer
example: 12
status:
type: string
enum: [completed, in_progress, pending]
innovation_score:
type: number
format: float
minimum: 0.0
maximum: 10.0
example: 9.6
legendary_agents_used:
type: array
items:
type: string
example: ["autonomous_architect", "proactive_quality", "evolutionary_prompts", "last_mile_cloud"]
self_improvement_suggestions:
type: array
items:
type: string
example: ["Increase evolutionary prompt diversity", "Enhance cloud cost optimization", "Expand quality policy coverage"]
future_evolution_path:
type: object
properties:
next_capabilities:
type: array
items:
type: string
example: ["quantum computing integration", "autonomous feature development", "cross-dimensional scaling"]
evolution_timeline_days:
type: integer
example: 30
AutonomousArchitectRequest:
type: object
required:
- project_goals
properties:
project_goals:
type: array
items:
type: string
example: ["scalable microservices", "real-time processing", "AI-powered analytics"]
description: High-level project goals and requirements
constraints:
type: array
items:
type: string
example: ["budget under $5000/month", "latency under 100ms", "99.9% availability"]
description: Technical and business constraints
learning_objectives:
type: array
items:
type: string
example: ["optimize for performance", "learn user behavior patterns", "improve cost efficiency"]
description: Areas where the architecture should learn and improve
evolutionary_parameters:
type: object
properties:
adaptation_rate:
type: number
format: float
minimum: 0.1
maximum: 1.0
example: 0.7
innovation_tolerance:
type: number
format: float
minimum: 0.0
maximum: 1.0
example: 0.8
AutonomousArchitectResponse:
type: object
properties:
success:
type: boolean
example: true
architecture_id:
type: string
example: "arch_revolutionary_001"
dynamic_dag:
type: object
properties:
nodes:
type: array
items:
type: object
properties:
id:
type: string
example: "service_user_management"
type:
type: string
example: "microservice"
dependencies:
type: array
items:
type: string
optimization_score:
type: number
format: float
example: 0.92
optimization_metrics:
type: object
properties:
performance_efficiency:
type: number
format: float
example: 0.94
cost_optimization:
type: number
format: float
example: 0.87
maintainability:
type: number
format: float
example: 0.91
evolutionary_features:
type: array
items:
type: string
example: ["adaptive load balancing", "autonomous scaling", "predictive resource allocation"]
learning_plan:
type: object
properties:
metrics_to_track:
type: array
items:
type: string
example: ["response_time", "throughput", "error_rate", "user_satisfaction"]
improvement_cycle_days:
type: integer
example: 7
implementation_roadmap:
type: array
items:
type: object
properties:
phase:
type: string
example: "core_services"
estimated_duration_days:
type: integer
example: 14
deliverables:
type: array
items:
type: string
ProactiveQualityRequest:
type: object
required:
- project_context
properties:
project_context:
type: object
properties:
project_type:
type: string
example: "web_application"
technology_stack:
type: array
items:
type: string
example: ["React", "Node.js", "PostgreSQL", "Docker"]
team_size:
type: integer
example: 8
quality_objectives:
type: array
items:
type: string
example: ["security_excellence", "performance_optimization", "maintainability_focus"]
policy_preferences:
type: object
properties:
enforcement_strictness:
type: string
enum: [lenient, balanced, strict, revolutionary]
default: revolutionary
automation_level:
type: string
enum: [manual, semi_automated, fully_automated]
default: fully_automated
predictive_analysis:
type: object
properties:
historical_data_available:
type: boolean
example: true
risk_tolerance:
type: string
enum: [low, medium, high]
example: low
ProactiveQualityResponse:
type: object
properties:
success:
type: boolean
example: true
policy_framework_id:
type: string
example: "policy_revolutionary_001"
quality_policies:
type: array
items:
type: object
properties:
policy_id:
type: string
example: "security_scan_policy"
name:
type: string
example: "Continuous Security Scanning"
description:
type: string
example: "Automatically scan code for security vulnerabilities"
enforcement_level:
type: string
enum: [warning, error, blocking]
automation_enabled:
type: boolean
example: true
predictive_indicators:
type: array
items:
type: string
example: ["code_complexity_increase", "dependency_vulnerabilities", "unusual_data_patterns"]
predictive_insights:
type: object
properties:
potential_issues:
type: array
items:
type: object
properties:
issue_type:
type: string
example: "performance_degradation"
probability:
type: number
format: float
example: 0.73
predicted_timeline_days:
type: integer
example: 12
prevention_actions:
type: array
items:
type: string
example: ["optimize_database_queries", "implement_caching_layer"]
continuous_improvement:
type: object
properties:
learning_enabled:
type: boolean
example: true
improvement_cycle_hours:
type: integer
example: 24
success_metrics:
type: object
properties:
issue_prevention_rate:
type: number
format: float
example: 0.89
quality_score_improvement:
type: number
format: float
example: 0.15
EvolutionaryPromptRequest:
type: object
required:
- base_prompt
- optimization_goals
properties:
base_prompt:
type: string
description: Initial prompt to optimize and evolve
example: "Generate a React component for user authentication"
optimization_goals:
type: array
items:
type: string
example: ["accuracy", "creativity", "efficiency", "specificity"]
description: Goals for prompt optimization
evolution_parameters:
type: object
properties:
population_size:
type: integer
minimum: 10
maximum: 100
example: 50
mutation_rate:
type: number
format: float
minimum: 0.01
maximum: 0.5
example: 0.1
crossover_rate:
type: number
format: float
minimum: 0.1
maximum: 0.9
example: 0.7
generations:
type: integer
minimum: 5
maximum: 100
example: 20
domain_context:
type: string
example: "web_development"
description: Domain context for optimization
performance_feedback:
type: array
items:
type: object
properties:
prompt_variant:
type: string
performance_score:
type: number
format: float
execution_time_ms:
type: integer
description: Historical performance feedback for learning
EvolutionaryPromptResponse:
type: object
properties:
success:
type: boolean
example: true
optimization_id:
type: string
example: "evo_prompt_001"
evolved_prompts:
type: array
items:
type: object
properties:
generation:
type: integer
example: 15
prompt:
type: string
example: "Generate a comprehensive React authentication component with TypeScript, security best practices, and accessibility features"
fitness_score:
type: number
format: float
example: 0.94
genetic_markers:
type: object
properties:
creativity_factor:
type: number
format: float
example: 0.87
specificity_factor:
type: number
format: float
example: 0.92
efficiency_factor:
type: number
format: float
example: 0.85
evolution_statistics:
type: object
properties:
total_generations:
type: integer
example: 20
improvement_factor:
type: number
format: float
example: 2.34
convergence_generation:
type: integer
example: 16
diversity_score:
type: number
format: float
example: 0.73
best_performing_prompt:
type: object
properties:
prompt:
type: string
performance_metrics:
type: object
properties:
accuracy:
type: number
format: float
example: 0.96
creativity:
type: number
format: float
example: 0.89
efficiency:
type: number
format: float
example: 0.91
future_evolution_potential:
type: object
properties:
mutation_suggestions:
type: array
items:
type: string
example: ["increase technical specificity", "add error handling context", "enhance accessibility requirements"]
crossover_opportunities:
type: array
items:
type: string
example: ["combine with deployment prompts", "merge with testing specifications"]
LastMileCloudRequest:
type: object
required:
- application_package
- deployment_requirements
properties:
application_package:
type: object
properties:
source_type:
type: string
enum: [docker_image, source_code, artifact_bundle]
example: docker_image
location:
type: string
example: "my-registry/my-app:v1.0.0"
build_requirements:
type: object
properties:
runtime:
type: string
example: "node:18"
dependencies:
type: array
items:
type: string
example: ["redis", "postgresql"]
deployment_requirements:
type: object
properties:
performance_targets:
type: object
properties:
min_replicas:
type: integer
example: 2
max_replicas:
type: integer
example: 100
cpu_requests:
type: string
example: "100m"
memory_requests:
type: string
example: "256Mi"
target_response_time_ms:
type: integer
example: 200
availability_requirements:
type: object
properties:
uptime_percentage:
type: number
format: float
example: 99.9
disaster_recovery:
type: boolean
example: true
compliance_requirements:
type: array
items:
type: string
example: ["GDPR", "SOC2", "HIPAA"]
cloud_preferences:
type: object
properties:
preferred_providers:
type: array
items:
type: string
example: ["AWS", "Azure"]
cost_optimization:
type: string
enum: [minimum_cost, balanced, performance_optimized]
example: balanced
geographic_requirements:
type: array
items:
type: string
example: ["us-east", "eu-west", "asia-pacific"]
autonomous_features:
type: object
properties:
auto_scaling:
type: boolean
example: true
auto_healing:
type: boolean
example: true
cost_optimization:
type: boolean
example: true
security_monitoring:
type: boolean
example: true
LastMileCloudResponse:
type: object
properties:
success:
type: boolean
example: true
deployment_id:
type: string
example: "deploy_revolutionary_001"
cloud_orchestration:
type: object
properties:
primary_deployment:
type: object
properties:
provider:
type: string
example: "AWS"
region:
type: string
example: "us-east-1"
cluster_id:
type: string
example: "eks-prod-cluster-001"
endpoint:
type: string
example: "https://api.my-app.aws.example.com"
failover_deployments:
type: array
items:
type: object
properties:
provider:
type: string
example: "Azure"
region:
type: string
example: "eastus"
endpoint:
type: string
example: "https://api.my-app.azure.example.com"
autonomous_verification:
type: object
properties:
health_checks:
type: array
items:
type: object
properties:
check_type:
type: string
example: "endpoint_availability"
status:
type: string
enum: [passed, failed, warning]
response_time_ms:
type: integer
example: 89
details:
type: string
performance_validation:
type: object
properties:
load_test_results:
type: object
properties:
requests_per_second:
type: integer
example: 5000
average_response_time_ms:
type: integer
example: 95
error_rate_percentage:
type: number
format: float
example: 0.02
security_validation:
type: object
properties:
vulnerability_scan_passed:
type: boolean
example: true
ssl_certificate_valid:
type: boolean
example: true
firewall_rules_applied:
type: boolean
example: true
cost_optimization:
type: object
properties:
estimated_monthly_cost:
type: number
format: float
example: 1247.50
cost_optimization_recommendations:
type: array
items:
type: string
example: ["Use spot instances for non-critical workloads", "Enable auto-shutdown for development environments"]
savings_achieved_percentage:
type: number
format: float
example: 23.5
monitoring_setup:
type: object
properties:
observability_dashboard:
type: string
example: "https://grafana.monitoring.example.com/dashboard/my-app"
alerting_enabled:
type: boolean
example: true
log_aggregation:
type: string
example: "centralized_elk_stack"
autonomous_features_status:
type: object
properties:
auto_scaling:
type: object
properties:
enabled:
type: boolean
example: true
current_replicas:
type: integer
example: 5
scaling_events_last_24h:
type: integer
example: 12
auto_healing:
type: object
properties:
enabled:
type: boolean
example: true
healing_events_last_24h:
type: integer
example: 2
continuous_optimization:
type: object
properties:
enabled:
type: boolean
example: true
optimization_cycle_hours:
type: integer
example: 6
# === CORE TOOL SCHEMAS ===
HealthResponse:
type: object
properties:
status:
type: string
example: "revolutionary_healthy"
service:
type: string
example: "multi-agent-orchestrator-legendary"
version:
type: string
example: "3.0.0-LEGENDARY"
revolutionary_features:
type: object
properties:
legendary_agents_active:
type: integer
example: 4
autonomous_capabilities:
type: boolean
example: true
evolutionary_intelligence:
type: boolean
example: true
multi_cloud_orchestration:
type: boolean
example: true
system_intelligence:
type: object
properties:
ai_sophistication_level:
type: string
example: "revolutionary"
self_improvement_active:
type: boolean
example: true
predictive_capabilities:
type: boolean
example: true
authentication:
type: string
example: "Descope OAuth 2.1 + PKCE + Non-Human Identity"
analytics:
type: string
example: "Cequence AI Gateway + Legendary Metrics"
mcp_protocol:
type: string
example: "2024-11-05 + Legendary Extensions"
OrchestateTaskRequest:
type: object
required:
- task_description
- agent_preferences
properties:
task_description:
type: string
example: "Build a real-time chat application with AI moderation"
agent_preferences:
type: array
items:
type: string
example: ["frontend", "backend", "devops"]
complexity_level:
type: string
enum: [simple, medium, complex, legendary]
default: complex
include_legendary:
type: boolean
default: true
description: Whether to include legendary agents in orchestration
quality_requirements:
type: object
properties:
security_level:
type: string
enum: [basic, high, revolutionary]
default: high
performance_targets:
type: object
properties:
response_time_ms:
type: integer
example: 100
OrchestateTaskResponse:
type: object
properties:
success:
type: boolean
example: true
orchestration_id:
type: string
example: "orch_legendary_001"
agents_involved:
type: array
items:
type: string
example: ["frontend", "backend", "devops", "autonomous_architect", "proactive_quality"]
execution_plan:
type: array
items:
type: object
properties:
step:
type: integer
agent:
type: string
task:
type: string
estimated_duration_minutes:
type: integer
revolutionary_enhancements:
type: array
items:
type: string
example: ["autonomous architecture optimization", "predictive quality assurance", "evolutionary prompt enhancement"]
# === STANDARD MCP PROTOCOL SCHEMAS ===
MCPInitializeRequest:
type: object
properties:
jsonrpc:
type: string
example: "2.0"
id:
type: string
example: "1"
method:
type: string
example: "initialize"
params:
type: object
properties:
protocolVersion:
type: string
example: "2024-11-05"
capabilities:
type: object
properties:
experimental:
type: object
properties:
legendary_agents:
type: boolean
example: true
clientInfo:
type: object
properties:
name:
type: string
example: "Claude Desktop"
version:
type: string
example: "1.0.0"
MCPInitializeResponse:
type: object
properties:
jsonrpc:
type: string
example: "2.0"
id:
type: string
example: "1"
result:
type: object
properties:
protocolVersion:
type: string
example: "2024-11-05"
capabilities:
type: object
properties:
experimental:
type: object
properties:
legendary_agents:
type: boolean
example: true
tools:
type: object
properties:
listChanged:
type: boolean
example: true
legendary_enabled:
type: boolean
example: true
serverInfo:
type: object
properties:
name:
type: string
example: "multi-agent-orchestrator-legendary"
version:
type: string
example: "3.0.0-LEGENDARY"
description:
type: string
example: "Revolutionary MCP server with 4 legendary AI agents and autonomous capabilities"
MCPListRequest:
type: object
properties:
jsonrpc:
type: string
example: "2.0"
id:
type: string
example: "2"
method:
type: string
example: "tools/list"
MCPToolsListResponse:
type: object
properties:
jsonrpc:
type: string
example: "2.0"
id:
type: string
example: "2"
result:
type: object
properties:
tools:
type: array
items:
type: object
properties:
name:
type: string
example: "legendary_generate_application"
description:
type: string
example: "Revolutionary application generation using all 4 legendary agents"
category:
type: string
example: "legendary"
inputSchema:
type: object
MCPToolCallRequest:
type: object
properties:
jsonrpc:
type: string
example: "2.0"
id:
type: string
example: "3"
method:
type: string
example: "tools/call"
params:
type: object
properties:
name:
type: string
example: "legendary_generate_application"
arguments:
type: object
MCPToolCallResponse:
type: object
properties:
jsonrpc:
type: string
example: "2.0"
id:
type: string
example: "3"
result:
type: object
properties:
content:
type: array
items:
type: object
properties:
type:
type: string
example: "text"
text:
type: string
# === ADDITIONAL CORE SCHEMAS ===
PingRequest:
type: object
properties:
message:
type: string
example: "Revolutionary ping test"
include_legendary_status:
type: boolean
default: true
PingResponse:
type: object
properties:
status:
type: string
example: "revolutionary_pong"
timestamp:
type: string
format: date-time
message:
type: string
example: "Revolutionary ping test"
legendary_status:
type: object
properties:
agents_active:
type: integer
example: 4
capabilities_enabled:
type: array
items:
type: string
example: ["autonomous_architecture", "proactive_quality", "evolutionary_prompts", "cloud_orchestration"]
server_info:
type: object
properties:
python_version:
type: string
example: "3.11.5"
platform:
type: string
example: "Linux-5.4.0-x86_64"
revolutionary_features:
type: boolean
example: true
SystemStatusRequest:
type: object
properties:
include_legendary:
type: boolean
default: true
include_metrics:
type: boolean
default: true
SystemStatusResponse:
type: object
properties:
status:
type: string
example: "revolutionary_healthy"
timestamp:
type: string
format: date-time
server:
type: string
example: "healthy"
orchestrator:
type: object
properties:
status:
type: string
example: "active"
agents_available:
type: array
items:
type: string
example: ["frontend", "backend", "devops", "reviewer"]
legendary_agents:
type: object
properties:
autonomous_architect:
type: object
properties:
status:
type: string
example: "ready"
active_architectures:
type: integer
example: 3
proactive_quality:
type: object
properties:
status:
type: string
example: "monitoring"
policies_active:
type: integer
example: 15
evolutionary_prompts:
type: object
properties:
status:
type: string
example: "evolving"
generations_completed:
type: integer
example: 127
last_mile_cloud:
type: object
properties:
status:
type: string
example: "orchestrating"
active_deployments:
type: integer
example: 8
revolutionary_capabilities:
type: boolean
example: true
authentication:
type: string
example: "enabled"
analytics:
type: string
example: "enabled"
healing_enabled:
type: boolean
example: true
CapabilitiesResponse:
type: object
properties:
core_capabilities:
type: array
items:
type: string
example: ["multi_agent_orchestration", "autonomous_healing", "code_generation"]
legendary_capabilities:
type: array
items:
type: string
example: ["autonomous_architecture", "proactive_quality", "evolutionary_prompts", "cloud_orchestration"]
ai_sophistication:
type: string
example: "revolutionary"
self_improvement:
type: boolean
example: true
total_tools:
type: integer
example: 12
legendary_tools:
type: integer
example: 5
GenerateArchitectureRequest:
type: object
required:
- requirements
properties:
requirements:
type: string
example: "Scalable e-commerce platform with microservices"
complexity:
type: string
enum: [simple, medium, complex, enterprise]
default: medium
preferences:
type: object
properties:
cloud_provider:
type: string
example: "AWS"
architecture_style:
type: string
example: "microservices"
GenerateArchitectureResponse:
type: object
properties:
success:
type: boolean
example: true
architecture:
type: object
properties:
components:
type: array
items:
type: object
properties:
name:
type: string
type:
type: string
description:
type: string
data_flow:
type: object
deployment_strategy:
type: object
AutoFixCodeRequest:
type: object
required:
- code
- error_message
properties:
code:
type: string
example: "def calculate_total(items):\\n return sum(item.price for item in items)"
error_message:
type: string
example: "AttributeError: 'dict' object has no attribute 'price'"
context:
type: string
example: "E-commerce cart calculation"
AutoFixCodeResponse:
type: object
properties:
success:
type: boolean
example: true
fixed_code:
type: string
example: "def calculate_total(items):\\n return sum(item['price'] for item in items)"
explanation:
type: string
example: "Changed item.price to item['price'] to handle dict objects"
confidence:
type: number
format: float
example: 0.95
changes_made:
type: array
items:
type: string
example: ["Changed attribute access to dictionary key access"]
tags:
- name: 🌟 Legendary Tools
description: Revolutionary AI agents with autonomous and evolutionary capabilities
- name: Core Agent Tools
description: Multi-agent orchestration and core capabilities
- name: MCP Protocol
description: Model Context Protocol implementation with legendary extensions
- name: MCP Tools
description: Tool management and execution with legendary support
- name: Infrastructure
description: System monitoring and infrastructure management
- name: Health & Status
description: Health monitoring and status reporting
- name: Analytics & Monitoring
description: Advanced analytics with Cequence AI Gateway integration