Skip to main content
Glama

Createve.AI Nexus

by spgoodman
api-usage.mdβ€’5.9 kB
# API Usage Guide This guide explains how to use the Createve.AI API Server endpoints from client applications. ## Authentication All API requests require authentication using an API key. The API key should be included in the `Authorization` header as a Bearer token: ``` Authorization: Bearer YOUR_API_KEY ``` API keys are defined in the `config.yaml` file: ```yaml security: api_keys: - key: "sk-apiservertest1" description: "API Key 1" - key: "sk-apiservertest2" description: "API Key 2" ``` ## API Endpoints API endpoints are exposed at `/api/{module}/{endpoint}` where: - `{module}` is the name of the API module (e.g., `text_processing`) - `{endpoint}` is the name of the API endpoint (e.g., `textAnalyzer`) ### Direct API Calls For direct API calls (non-queued), send a POST request to the endpoint with the required parameters: ```http POST /api/text_processing/textAnalyzer HTTP/1.1 Host: localhost:43080 Authorization: Bearer sk-apiservertest1 Content-Type: application/json { "text": "This is a sample text to analyze." } ``` The response will be a JSON object with the result: ```json { "analysis_results": { "statistics": { "character_count": 32, "word_count": 7, "line_count": 1, "average_word_length": 3.57 }, "sentiment": { "assessment": "neutral", "positive_word_count": 0, "negative_word_count": 0 } } } ``` ### Queued API Calls For queued API calls (long-running operations), the process is two-step: 1. Send a POST request to the endpoint to queue the operation: ```http POST /api/text_processing/textSummarizer HTTP/1.1 Host: localhost:43080 Authorization: Bearer sk-apiservertest1 Content-Type: application/json { "text": "This is a long text that needs to be summarized...", "summary_length": 2 } ``` The response will be a JSON object with a queue ID: ```json { "queue_id": "224dd457-b251-490f-827e-92b708edb032" } ``` 2. Send a POST request to check the queue status: ```http POST /api/text_processing/textSummarizer/queue HTTP/1.1 Host: localhost:43080 Authorization: Bearer sk-apiservertest1 Content-Type: application/json { "queue_id": "224dd457-b251-490f-827e-92b708edb032" } ``` If the operation is still in progress, the response will be the same queue ID: ```json { "queue_id": "224dd457-b251-490f-827e-92b708edb032" } ``` If the operation is complete, the response will be the result: ```json { "summary": "This is a summary of the long text." } ``` If there was an error, the response will include the error details: ```json { "error": 500, "description": "Error processing request", "details": { "message": "Error details here" } } ``` ## File Handling For API endpoints that accept or return file data (`IMAGE`, `VIDEO`, `FILE`), the data should be base64 encoded in the JSON request/response. For example, to send an image to an API endpoint: ```http POST /api/image_processing/resizeImage HTTP/1.1 Host: localhost:43080 Authorization: Bearer sk-apiservertest1 Content-Type: application/json { "image": "...", "width": 800, "height": 600 } ``` The response will include the processed image as a base64-encoded string: ```json { "resized_image": "..." } ``` ## Error Handling Errors are returned as JSON responses with HTTP status codes: - `400 Bad Request`: Invalid parameters - `401 Unauthorized`: Invalid or missing API key - `404 Not Found`: API endpoint not found - `422 Unprocessable Entity`: Invalid input data - `500 Internal Server Error`: Server error The error response includes details about the error: ```json { "error": 400, "description": "Invalid input", "details": { "field": "text", "message": "text is required" } } ``` ## OpenAPI Documentation The API server provides OpenAPI documentation at: ``` http://localhost:43080/docs ``` This interactive documentation allows you to explore the available endpoints, see the required parameters, and test the endpoints directly. ## Client Examples ### Python ```python import requests import json import base64 # Define API endpoint and API key api_url = "http://localhost:43080/api/text_processing/textAnalyzer" api_key = "sk-apiservertest1" # Set up headers headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } # Prepare request data data = { "text": "This is a test message." } # Make the request response = requests.post(api_url, headers=headers, json=data) # Print the response print(f"Status code: {response.status_code}") print(json.dumps(response.json(), indent=2)) ``` ### JavaScript ```javascript async function callApi() { const apiUrl = 'http://localhost:43080/api/text_processing/textAnalyzer'; const apiKey = 'sk-apiservertest1'; const response = await fetch(apiUrl, { method: 'POST', headers: { 'Authorization': `Bearer ${apiKey}`, 'Content-Type': 'application/json' }, body: JSON.stringify({ text: 'This is a test message.' }) }); const data = await response.json(); console.log('Status code:', response.status); console.log('Response data:', data); } callApi(); ``` ### cURL ```bash curl -X POST "http://localhost:43080/api/text_processing/textAnalyzer" \ -H "Authorization: Bearer sk-apiservertest1" \ -H "Content-Type: application/json" \ -d '{"text": "This is a test message."}' ``` ## Rate Limiting and Quotas Currently, the API server does not implement rate limiting or quotas. However, the server does have a maximum queue size and process timeout configurable in the `config.yaml` file: ```yaml processing: max_threads: 10 max_queue_size: 100 process_timeout_seconds: 300 ``` If the queue is full, the server will return a 500 error with the message "Queue is full".

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/spgoodman/createveai-nexus-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server