MCP Tavily Search Server
by spences10
Verified
# mcp-tavily-search
A Model Context Protocol (MCP) server for integrating Tavily's search
API with LLMs. This server provides intelligent web search
capabilities optimized for high-quality, factual results, including
context generation for RAG applications and direct question answering.
<a href="https://glama.ai/mcp/servers/1jcttrux58"><img width="380" height="200" src="https://glama.ai/mcp/servers/1jcttrux58/badge" alt="Tavily Search Server MCP server" /></a>
## Features
- 🔍 Advanced web search capabilities through Tavily API
- 🤖 AI-generated summaries of search results
- 🎯 Domain filtering for higher quality results
- 📊 Configurable search depth and parameters
- 🧠 Context generation for RAG applications
- ❓ Direct question answering capabilities
- 💾 Response caching with TTL support
- 📝 Multiple response formats (text, JSON, markdown)
- 🔄 Structured result formatting optimized for LLMs
- 🏗️ Built on the Model Context Protocol
## Configuration
This server requires configuration through your MCP client. Here are
examples for different environments:
### Cline Configuration
Add this to your Cline MCP settings:
```json
{
"mcpServers": {
"mcp-tavily-search": {
"command": "npx",
"args": ["-y", "mcp-tavily-search"],
"env": {
"TAVILY_API_KEY": "your-tavily-api-key"
}
}
}
}
```
### Claude Desktop with WSL Configuration
For WSL environments, add this to your Claude Desktop configuration:
```json
{
"mcpServers": {
"mcp-tavily-search": {
"command": "wsl.exe",
"args": [
"bash",
"-c",
"source ~/.nvm/nvm.sh && TAVILY_API_KEY=your-tavily-api-key /home/username/.nvm/versions/node/v20.12.1/bin/npx mcp-tavily-search"
]
}
}
}
```
### Environment Variables
The server requires the following environment variable:
- `TAVILY_API_KEY`: Your Tavily API key (required)
## API
The server implements three MCP tools with configurable parameters:
### tavily_search
Search the web using Tavily Search API, optimized for high-quality,
factual results.
Parameters:
- `query` (string, required): Search query
- `search_depth` (string, optional): "basic" (faster) or "advanced"
(more thorough). Defaults to "basic"
- `topic` (string, optional): "general" or "news". Defaults to
"general"
- `days` (number, optional): Number of days back to search (news topic
only). Defaults to 3
- `time_range` (string, optional): Time range for results ('day',
'week', 'month', 'year' or 'd', 'w', 'm', 'y')
- `max_results` (number, optional): Maximum number of results.
Defaults to 5
- `include_answer` (boolean, optional): Include AI-generated summary.
Defaults to true
- `include_images` (boolean, optional): Include related images.
Defaults to false
- `include_image_descriptions` (boolean, optional): Include image
descriptions. Defaults to false
- `include_raw_content` (boolean, optional): Include raw HTML content.
Defaults to false
- `include_domains` (string[], optional): List of trusted domains to
include
- `exclude_domains` (string[], optional): List of domains to exclude
- `response_format` (string, optional): 'text', 'json', or 'markdown'.
Defaults to 'text'
- `cache_ttl` (number, optional): Cache time-to-live in seconds.
Defaults to 3600
- `force_refresh` (boolean, optional): Force fresh results ignoring
cache. Defaults to false
### tavily_get_search_context
Generate context for RAG applications using Tavily search.
Parameters:
- `query` (string, required): Search query for context generation
- `max_tokens` (number, optional): Maximum length of generated
context. Defaults to 2000
- `search_depth` (string, optional): "basic" or "advanced". Defaults
to "advanced"
- `topic` (string, optional): "general" or "news". Defaults to
"general"
- Other parameters same as tavily_search
### tavily_qna_search
Get direct answers to questions using Tavily search.
Parameters:
- `query` (string, required): Question to be answered
- `include_sources` (boolean, optional): Include source citations.
Defaults to true
- `search_depth` (string, optional): "basic" or "advanced". Defaults
to "advanced"
- `topic` (string, optional): "general" or "news". Defaults to
"general"
- Other parameters same as tavily_search
## Domain Filtering
The server supports flexible domain filtering through two optional
parameters:
- `include_domains`: Array of trusted domains to include in search
results
- `exclude_domains`: Array of domains to exclude from search results
This allows you to:
- Target specific trusted sources for academic or technical searches
- Exclude potentially unreliable or irrelevant sources
- Customize sources based on your specific needs
- Access all available sources when no filtering is specified
Example domain filtering:
```json
{
"include_domains": ["arxiv.org", "science.gov"],
"exclude_domains": ["example.com"]
}
```
## Development
### Setup
1. Clone the repository
2. Install dependencies:
```bash
pnpm install
```
3. Build the project:
```bash
pnpm build
```
4. Run in development mode:
```bash
pnpm dev
```
### Publishing
The project uses changesets for version management. To publish:
1. Create a changeset:
```bash
pnpm changeset
```
2. Version the package:
```bash
pnpm changeset version
```
3. Publish to npm:
```bash
pnpm release
```
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgments
- Built on the
[Model Context Protocol](https://github.com/modelcontextprotocol)
- Powered by [Tavily Search API](https://tavily.com)