Skip to main content
Glama

create_entities

Generate new entities with observations and optional embeddings using MCP server’s libSQL for efficient memory management and semantic knowledge storage.

Instructions

Create new entities with observations and optional embeddings

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
entitiesYes

Implementation Reference

  • Core handler implementation: Validates input entities, performs upsert (update or insert) on entities table, manages observations in transaction per entity.
    async create_entities( entities: Array<{ name: string; entityType: string; observations: string[]; }>, ): Promise<void> { try { for (const entity of entities) { // Validate entity name if ( !entity.name || typeof entity.name !== 'string' || entity.name.trim() === '' ) { throw new Error('Entity name must be a non-empty string'); } // Validate entity type if ( !entity.entityType || typeof entity.entityType !== 'string' || entity.entityType.trim() === '' ) { throw new Error( `Invalid entity type for entity "${entity.name}"`, ); } // Validate observations if ( !Array.isArray(entity.observations) || entity.observations.length === 0 ) { throw new Error( `Entity "${entity.name}" must have at least one observation`, ); } if ( !entity.observations.every( (obs) => typeof obs === 'string' && obs.trim() !== '', ) ) { throw new Error( `Entity "${entity.name}" has invalid observations. All observations must be non-empty strings`, ); } // Start a transaction const txn = await this.client.transaction('write'); try { // First try to update const result = await txn.execute({ sql: 'UPDATE entities SET entity_type = ? WHERE name = ?', args: [entity.entityType, entity.name], }); // If no rows affected, do insert if (result.rowsAffected === 0) { await txn.execute({ sql: 'INSERT INTO entities (name, entity_type) VALUES (?, ?)', args: [entity.name, entity.entityType], }); } // Clear old observations await txn.execute({ sql: 'DELETE FROM observations WHERE entity_name = ?', args: [entity.name], }); // Add new observations for (const observation of entity.observations) { await txn.execute({ sql: 'INSERT INTO observations (entity_name, content) VALUES (?, ?)', args: [entity.name, observation], }); } await txn.commit(); } catch (error) { await txn.rollback(); throw error; } } } catch (error) { // Wrap all errors with context throw new Error( `Entity operation failed: ${ error instanceof Error ? error.message : String(error) }`, ); } }
  • Input schema using Valibot for validating the entities array with name, entityType, and observations.
    const CreateEntitiesSchema = v.object({ entities: v.array( v.object({ name: v.string(), entityType: v.string(), observations: v.array(v.string()), }), ), });
  • src/index.ts:60-99 (registration)
    MCP server tool registration with name, description, schema, and thin async handler that calls the db.create_entities method and handles response/error.
    server.tool<typeof CreateEntitiesSchema>( { name: 'create_entities', description: 'Create new entities with observations', schema: CreateEntitiesSchema, }, async ({ entities }) => { try { await db.create_entities(entities); return { content: [ { type: 'text' as const, text: `Successfully processed ${entities.length} entities (created new or updated existing)`, }, ], }; } catch (error) { return { content: [ { type: 'text' as const, text: JSON.stringify( { error: 'internal_error', message: error instanceof Error ? error.message : 'Unknown error', }, null, 2, ), }, ], isError: true, }; } }, );

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/spences10/mcp-memory-libsql'

If you have feedback or need assistance with the MCP directory API, please join our Discord server