Skip to main content
Glama

mcp-memory-libsql

schema.ts1.37 kB
export const schema = [ // Create entities table `CREATE TABLE IF NOT EXISTS entities ( name TEXT PRIMARY KEY, entity_type TEXT NOT NULL, embedding F32_BLOB(4), -- 4 dimensions for testing created_at DATETIME DEFAULT CURRENT_TIMESTAMP )`, // Create observations table `CREATE TABLE IF NOT EXISTS observations ( id INTEGER PRIMARY KEY AUTOINCREMENT, entity_name TEXT NOT NULL, content TEXT NOT NULL, created_at DATETIME DEFAULT CURRENT_TIMESTAMP, FOREIGN KEY (entity_name) REFERENCES entities(name) )`, // Create relations table `CREATE TABLE IF NOT EXISTS relations ( id INTEGER PRIMARY KEY AUTOINCREMENT, source TEXT NOT NULL, target TEXT NOT NULL, relation_type TEXT NOT NULL, created_at DATETIME DEFAULT CURRENT_TIMESTAMP, FOREIGN KEY (source) REFERENCES entities(name), FOREIGN KEY (target) REFERENCES entities(name) )`, // Create indexes `CREATE INDEX IF NOT EXISTS idx_entities_name ON entities(name)`, `CREATE INDEX IF NOT EXISTS idx_observations_entity ON observations(entity_name)`, `CREATE INDEX IF NOT EXISTS idx_relations_source ON relations(source)`, `CREATE INDEX IF NOT EXISTS idx_relations_target ON relations(target)`, // Create vector index for similarity search `CREATE INDEX IF NOT EXISTS idx_entities_embedding ON entities(libsql_vector_idx(embedding))`, ];

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/spences10/mcp-memory-libsql'

If you have feedback or need assistance with the MCP directory API, please join our Discord server