Skip to main content
Glama
llama_index_implementation.md2.54 kB
# LlamaIndex Integration Implementation This document describes the implementation of the LlamaIndex integration for the Persistent-Code MCP server. ## Overview The LlamaIndex integration enhances the Persistent-Code MCP server with semantic search capabilities, allowing Claude to understand code based on meaning rather than just keywords. ## Implementation The implementation consists of the following components: 1. **LlamaIndexManager**: A new module that encapsulates all LlamaIndex functionality 2. **KnowledgeGraph**: Updated to use the LlamaIndexManager for semantic operations 3. **Test Scripts**: Added examples to demonstrate the semantic search capabilities 4. **Documentation**: Updated to explain the LlamaIndex integration ## Benefits The LlamaIndex integration provides the following benefits: 1. **Semantic Search**: Find code components based on their meaning 2. **Vector Embeddings**: Efficient similarity matching for code components 3. **Knowledge Graph**: Graph-based representation of code relationships 4. **Contextual Retrieval**: More relevant code suggestions ## Usage To use the semantic search capabilities: 1. Ensure LlamaIndex is enabled in the config ```python from persistent_code.config import config config.set("llama_index", "enabled", True) ``` 2. Use the search_code method with natural language queries ```python from persistent_code.knowledge_graph import KnowledgeGraph kg = KnowledgeGraph("my_project") results = kg.search_code("function to validate user input") ``` 3. Try the semantic search CLI ```bash python semantic_search_cli.py --project my_project --semantic --query "function to validate user input" ``` ## Architecture The architecture follows these design principles: 1. **Separation of Concerns**: LlamaIndex functionality is isolated in its own manager 2. **Error Handling**: Robust error handling for graceful fallback to basic search 3. **Configuration**: Easy configuration of LlamaIndex features 4. **Backward Compatibility**: Maintains compatibility with existing code ## Testing To test the LlamaIndex integration: ```bash python examples/test_semantic_search.py --project test_project --file examples/sample_code.py --query "function to handle authentication" ``` ## Future Improvements Potential future improvements include: 1. More sophisticated semantic triple extraction 2. Support for different embedding models 3. Caching of embeddings for better performance 4. Integration with external embedding services

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sparshdrolia/Persistent-code-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server