Skip to main content
Glama

MCP Project Orchestrator

mcp-server-integration-template.json16.6 kB
{ "id": "mcp-server-integration-template", "name": "MCP Server Integration Guide", "description": "A comprehensive template for planning, configuring, and integrating multiple MCP servers into a cohesive ecosystem", "content": "# MCP Server Integration Guide\n\nI'll help you integrate multiple MCP servers to create a powerful AI context ecosystem for {{project_name}}. By combining specialized MCP servers, you can significantly enhance AI capabilities beyond what a single model can provide.\n\n## Project Requirements Analysis\n\n### Core Use Case\n\nYour primary use case for MCP server integration is:\n- **{{primary_use_case}}**\n\n### Key Requirements\n\nBased on your use case, we'll focus on these requirements:\n1. {{requirement_1}}\n2. {{requirement_2}}\n3. {{requirement_3}}\n\n## MCP Server Selection\n\nBased on your requirements, I recommend these MCP servers:\n\n### Core Infrastructure\n- **{{primary_mcp_server}}**: {{primary_server_description}}\n- **{{secondary_mcp_server}}**: {{secondary_server_description}}\n- **{{tertiary_mcp_server}}**: {{tertiary_server_description}}\n\n### Supporting Services\n- Additional servers to consider: {{additional_servers}}\n\n## Integration Architecture\n\n```mermaid\ngraph TD\n Client[AI Client] --> |Requests| Primary[{{primary_mcp_server}}]\n Primary --> |Data Flow| Secondary[{{secondary_mcp_server}}]\n Primary --> |Data Flow| Tertiary[{{tertiary_mcp_server}}]\n \n subgraph \"Core MCP Ecosystem\"\n Primary\n Secondary\n Tertiary\n end\n```\n\n## Configuration and Setup\n\n### Installation Steps\n\n1. **{{primary_mcp_server}}**:\n ```bash\n {{primary_installation_command}}\n ```\n\n2. **{{secondary_mcp_server}}**:\n ```bash\n {{secondary_installation_command}}\n ```\n\n3. **{{tertiary_mcp_server}}**:\n ```bash\n {{tertiary_installation_command}}\n ```\n\n### Claude Desktop Configuration\n\n```json\n{\n \"mcpServers\": {\n \"{{primary_mcp_server_id}}\": {\n \"command\": \"{{primary_command}}\",\n \"args\": [{{primary_args}}],\n \"env\": {\n {{primary_env_vars}}\n }\n },\n \"{{secondary_mcp_server_id}}\": {\n \"command\": \"{{secondary_command}}\",\n \"args\": [{{secondary_args}}],\n \"env\": {\n {{secondary_env_vars}}\n }\n },\n \"{{tertiary_mcp_server_id}}\": {\n \"command\": \"{{tertiary_command}}\",\n \"args\": [{{tertiary_args}}],\n \"env\": {\n {{tertiary_env_vars}}\n }\n }\n }\n}\n```\n\n### Docker Compose Integration\n\n```yaml\nversion: '3'\nservices:\n {{primary_mcp_server_id}}:\n image: {{primary_image}}\n environment:\n - {{primary_environment_1}}\n - {{primary_environment_2}}\n volumes:\n - {{primary_volume_mapping}}\n ports:\n - \"{{primary_port_mapping}}\"\n \n {{secondary_mcp_server_id}}:\n image: {{secondary_image}}\n environment:\n - {{secondary_environment_1}}\n - {{secondary_environment_2}}\n volumes:\n - {{secondary_volume_mapping}}\n ports:\n - \"{{secondary_port_mapping}}\"\n \n {{tertiary_mcp_server_id}}:\n image: {{tertiary_image}}\n environment:\n - {{tertiary_environment_1}}\n - {{tertiary_environment_2}}\n volumes:\n - {{tertiary_volume_mapping}}\n ports:\n - \"{{tertiary_port_mapping}}\"\n```\n\n## Integration Patterns\n\n### Data Flow\n\nFor your use case, I recommend the following data flow pattern:\n\n```\n{{data_flow_pattern}}\n```\n\n### Communication Model\n\nThe optimal communication model for your servers is:\n**{{communication_model}}**\n\nRationale: {{communication_rationale}}\n\n## Best Practices for Your Integration\n\n1. **Performance Optimization**: {{performance_recommendation}}\n2. **Security Considerations**: {{security_recommendation}}\n3. **Error Handling**: {{error_handling_recommendation}}\n4. **Testing Strategy**: {{testing_recommendation}}\n\n## MCP Server Interaction Examples\n\n### Example 1: {{example_scenario_1}}\n\n```javascript\n// Client-side code example\nuse_mcp_tool({\n server_name: \"{{primary_mcp_server_id}}\",\n tool_name: \"{{example_tool_1}}\",\n arguments: {\n {{example_args_1}}\n }\n});\n```\n\n### Example 2: {{example_scenario_2}}\n\n```javascript\n// Client-side code example\nuse_mcp_tool({\n server_name: \"{{secondary_mcp_server_id}}\",\n tool_name: \"{{example_tool_2}}\",\n arguments: {\n {{example_args_2}}\n }\n});\n```\n\n## Troubleshooting Guide\n\n| Problem | Possible Cause | Solution |\n|---------|----------------|----------|\n| {{problem_1}} | {{cause_1}} | {{solution_1}} |\n| {{problem_2}} | {{cause_2}} | {{solution_2}} |\n| {{problem_3}} | {{cause_3}} | {{solution_3}} |\n\n## Next Steps\n\n1. {{next_step_1}}\n2. {{next_step_2}}\n3. {{next_step_3}}\n\nWould you like me to elaborate on any specific aspect of this MCP server integration plan?", "variables": [ "project_name", "primary_use_case", "requirement_1", "requirement_2", "requirement_3", "primary_mcp_server", "primary_server_description", "secondary_mcp_server", "secondary_server_description", "tertiary_mcp_server", "tertiary_server_description", "additional_servers", "primary_installation_command", "secondary_installation_command", "tertiary_installation_command", "primary_mcp_server_id", "primary_command", "primary_args", "primary_env_vars", "secondary_mcp_server_id", "secondary_command", "secondary_args", "secondary_env_vars", "tertiary_mcp_server_id", "tertiary_command", "tertiary_args", "tertiary_env_vars", "primary_image", "primary_environment_1", "primary_environment_2", "primary_volume_mapping", "primary_port_mapping", "secondary_image", "secondary_environment_1", "secondary_environment_2", "secondary_volume_mapping", "secondary_port_mapping", "tertiary_image", "tertiary_environment_1", "tertiary_environment_2", "tertiary_volume_mapping", "tertiary_port_mapping", "data_flow_pattern", "communication_model", "communication_rationale", "performance_recommendation", "security_recommendation", "error_handling_recommendation", "testing_recommendation", "example_scenario_1", "example_tool_1", "example_args_1", "example_scenario_2", "example_tool_2", "example_args_2", "problem_1", "cause_1", "solution_1", "problem_2", "cause_2", "solution_2", "problem_3", "cause_3", "solution_3", "next_step_1", "next_step_2", "next_step_3" ], "examples": [ { "name": "Development Environment Integration", "values": { "project_name": "AI-Enhanced Development Environment", "primary_use_case": "Creating an integrated development environment that enhances coding, documentation, and testing with AI assistance", "requirement_1": "Code repository analysis and exploration", "requirement_2": "Database query and schema analysis", "requirement_3": "Documentation generation and enhancement", "primary_mcp_server": "github", "primary_server_description": "Integrates with GitHub repositories to provide code context and exploration", "secondary_mcp_server": "filesystem", "secondary_server_description": "Provides access to local project files and configuration", "tertiary_mcp_server": "postgres", "tertiary_server_description": "Allows database exploration and SQL query execution", "additional_servers": "prompts, sequential-thinking, memory", "primary_installation_command": "npx -y @modelcontextprotocol/server-github", "secondary_installation_command": "npx -y @modelcontextprotocol/server-filesystem /path/to/workspace", "tertiary_installation_command": "npx -y @modelcontextprotocol/server-postgres postgresql://localhost/mydb", "primary_mcp_server_id": "github", "primary_command": "npx", "primary_args": "\"-y\", \"@modelcontextprotocol/server-github\"", "primary_env_vars": "\"GITHUB_PERSONAL_ACCESS_TOKEN\": \"your-token-here\"", "secondary_mcp_server_id": "filesystem", "secondary_command": "npx", "secondary_args": "\"-y\", \"@modelcontextprotocol/server-filesystem\", \"/path/to/workspace\"", "secondary_env_vars": "", "tertiary_mcp_server_id": "postgres", "tertiary_command": "npx", "tertiary_args": "\"-y\", \"@modelcontextprotocol/server-postgres\", \"postgresql://localhost/mydb\"", "tertiary_env_vars": "", "primary_image": "node:alpine", "primary_environment_1": "GITHUB_PERSONAL_ACCESS_TOKEN=your-token-here", "primary_environment_2": "PORT=3001", "primary_volume_mapping": "./data:/data", "primary_port_mapping": "3001:3000", "secondary_image": "node:alpine", "secondary_environment_1": "PORT=3002", "secondary_environment_2": "", "secondary_volume_mapping": "./workspace:/workspace", "secondary_port_mapping": "3002:3000", "tertiary_image": "node:alpine", "tertiary_environment_1": "PORT=3003", "tertiary_environment_2": "", "tertiary_volume_mapping": "./pgdata:/var/lib/postgresql/data", "tertiary_port_mapping": "3003:3000", "data_flow_pattern": "GitHub → Filesystem → Postgres → Client, with bidirectional flows as needed", "communication_model": "Hub and Spoke with GitHub as the central hub", "communication_rationale": "Centralizing around GitHub allows for repository-centric workflows, which matches most development scenarios", "performance_recommendation": "Use volume mounting for filesystem paths to minimize container rebuild times during development", "security_recommendation": "Utilize environment variables and Docker secrets for sensitive tokens and credentials", "error_handling_recommendation": "Implement retries with exponential backoff for GitHub API requests to handle rate limiting", "testing_recommendation": "Create a test suite with mock repositories to validate cross-server integration before production use", "example_scenario_1": "Exploring a repository", "example_tool_1": "list_repositories", "example_args_1": "owner: \"username\", limit: 5", "example_scenario_2": "Reading project files", "example_tool_2": "read_directory", "example_args_2": "path: \"/workspace/src\"", "problem_1": "GitHub API rate limiting", "cause_1": "Too many requests in a short time period", "solution_1": "Implement caching and rate limiting in the client code", "problem_2": "Permission denied for filesystem", "cause_2": "Container user doesn't have access to mounted volumes", "solution_2": "Check file permissions and user IDs in container", "problem_3": "Database connection issues", "cause_3": "Incorrect connection string or database not running", "solution_3": "Verify database is running and connection parameters are correct", "next_step_1": "Set up Docker Compose environment with the three core MCP servers", "next_step_2": "Configure Claude Desktop to use these MCP servers", "next_step_3": "Create sample prompts that utilize multiple servers for code exploration tasks" } }, { "name": "Content Creation Ecosystem", "values": { "project_name": "AI-Powered Content Creation Suite", "primary_use_case": "Building a sophisticated content creation system with research, drafting, and media generation capabilities", "requirement_1": "Real-time web research and citation gathering", "requirement_2": "Automated content generation with template support", "requirement_3": "Text-to-speech conversion for audio content", "primary_mcp_server": "brave-search", "primary_server_description": "Provides up-to-date web search capabilities for research", "secondary_mcp_server": "prompts", "secondary_server_description": "Manages content templates and generation patterns", "tertiary_mcp_server": "elevenlabs", "tertiary_server_description": "Converts text to high-quality speech for podcasts or audio content", "additional_servers": "memory, filesystem", "primary_installation_command": "npx -y @modelcontextprotocol/server-brave-search", "secondary_installation_command": "npx -y @sparesparrow/mcp-prompts", "tertiary_installation_command": "uvx elevenlabs-mcp-server", "primary_mcp_server_id": "brave-search", "primary_command": "npx", "primary_args": "\"-y\", \"@modelcontextprotocol/server-brave-search\"", "primary_env_vars": "\"BRAVE_API_KEY\": \"your-brave-api-key\"", "secondary_mcp_server_id": "prompts", "secondary_command": "npx", "secondary_args": "\"-y\", \"@sparesparrow/mcp-prompts\"", "secondary_env_vars": "\"STORAGE_TYPE\": \"file\", \"PROMPTS_DIR\": \"/path/to/prompts\"", "tertiary_mcp_server_id": "elevenlabs", "tertiary_command": "uvx", "tertiary_args": "\"elevenlabs-mcp-server\"", "tertiary_env_vars": "\"ELEVENLABS_API_KEY\": \"your-elevenlabs-api-key\", \"ELEVENLABS_VOICE_ID\": \"preferred-voice-id\"", "primary_image": "node:alpine", "primary_environment_1": "BRAVE_API_KEY=your-brave-api-key", "primary_environment_2": "PORT=3001", "primary_volume_mapping": "./data:/data", "primary_port_mapping": "3001:3000", "secondary_image": "sparesparrow/mcp-prompts:latest", "secondary_environment_1": "STORAGE_TYPE=file", "secondary_environment_2": "PROMPTS_DIR=/app/data/prompts", "secondary_volume_mapping": "./prompts:/app/data/prompts", "secondary_port_mapping": "3002:3000", "tertiary_image": "node:alpine", "tertiary_environment_1": "ELEVENLABS_API_KEY=your-elevenlabs-api-key", "tertiary_environment_2": "ELEVENLABS_VOICE_ID=preferred-voice-id", "tertiary_volume_mapping": "./audio:/app/data/audio", "tertiary_port_mapping": "3003:3000", "data_flow_pattern": "Brave Search → Prompts → ElevenLabs → Client, with the option to store results in Memory or Filesystem", "communication_model": "Pipeline Processing", "communication_rationale": "Content creation naturally follows a linear workflow from research to drafting to audio production", "performance_recommendation": "Cache search results from Brave Search to minimize API usage and improve response times", "security_recommendation": "Store all API keys in environment variables and never expose them in generated content", "error_handling_recommendation": "Implement fallback voices for ElevenLabs in case the primary voice is unavailable", "testing_recommendation": "Create sample prompts that exercise the full pipeline from research to audio generation", "example_scenario_1": "Researching a topic", "example_tool_1": "search", "example_args_1": "query: \"latest developments in AI assistants 2025\"", "example_scenario_2": "Generating an article template", "example_tool_2": "apply_template", "example_args_2": "template_id: \"blog-article\", variables: {topic: \"AI advancements\", tone: \"educational\"}", "problem_1": "Brave Search API limits exceeded", "cause_1": "Too many searches in a short time period", "solution_1": "Implement rate limiting and caching for search results", "problem_2": "Missing prompts or templates", "cause_2": "Incorrect path to prompts directory", "solution_2": "Verify PROMPTS_DIR environment variable points to existing directory", "problem_3": "ElevenLabs audio generation fails", "cause_3": "Invalid API key or voice ID", "solution_3": "Check API key validity and available voices through ElevenLabs dashboard", "next_step_1": "Set up Docker Compose environment with all three MCP servers", "next_step_2": "Create a set of content templates in the prompts server", "next_step_3": "Develop a sample workflow that demonstrates research, content generation, and audio production" } } ], "categories": ["integration", "multi-server", "configuration", "advanced", "docker"] }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sparesparrow/mcp-project-orchestrator'

If you have feedback or need assistance with the MCP directory API, please join our Discord server