Skip to main content
Glama

delete_graph

Permanently remove a knowledge graph and all its data from the Mnemosyne MCP server. This action cannot be undone.

Instructions

Permanently deletes a knowledge graph and all its contents. This action cannot be undone. Use with caution.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
graph_idYes

Implementation Reference

  • The asynchronous handler function that implements the core logic of the 'delete_graph' tool: authenticates the user, validates the graph_id parameter, submits a backend job with task_type='delete_graph', polls or streams for job completion, and returns a formatted JSON response with success status, graph_id, job_id, and result details.
    async def delete_graph_tool( graph_id: str, context: Context | None = None, ) -> str: """Delete a knowledge graph.""" auth = MCPAuthContext.from_context(context) auth.require_auth() if not graph_id or not graph_id.strip(): raise ValueError("graph_id is required and cannot be empty") metadata = await submit_job( base_url=backend_config.base_url, auth=auth, task_type="delete_graph", payload={"graph_id": graph_id.strip()}, ) if context: await context.report_progress(10, 100) result = await _wait_for_job_result( job_stream, metadata, context, auth ) return _render_json({ "success": True, "graph_id": graph_id.strip(), "deleted": True, "job_id": metadata.job_id, **result, })
  • The @server.tool decorator that registers the 'delete_graph' tool on the FastMCP server, specifying the tool name, title, description, and input schema via function signature.
    @server.tool( name="delete_graph", title="Delete Knowledge Graph", description=( "Permanently deletes a knowledge graph and all its contents. " "This action cannot be undone. Use with caution." ), )
  • The call to register_graph_ops_tools which executes the tool registrations including 'delete_graph' on the MCP server instance.
    register_graph_ops_tools(mcp_server)
  • Dataclass McpDeleteGraphResponse providing structured output schema for delete_graph operations, with fields for operation summary, deletion confirmation, backup info, and cleanup metrics.
    class McpDeleteGraphResponse(McpResponseObject): """Response for graph deletion operations""" operation_summary: McpOperationSummary deletion_info: Dict[str, Any] backup_info: Optional[Dict[str, Any]] cleanup_results: Dict[str, Any] success: bool = True @classmethod def from_api_response(cls, api_response: Dict[str, Any], operation_id: str, graph_id: str, user_id: Optional[str] = None) -> 'McpDeleteGraphResponse': """Transform API graph deletion response to MCP format""" import datetime return cls( operation_summary=McpOperationSummary( operation_type="delete_graph", operation_id=operation_id, timestamp=datetime.datetime.now().isoformat(), user_id=user_id ), deletion_info={ "graph_id": graph_id, "deleted_at": datetime.datetime.now().isoformat(), "confirmed": True }, backup_info=api_response.get("backup_info"), cleanup_results={ "files_removed": api_response.get("files_removed", 0), "space_freed_mb": api_response.get("space_freed_mb", 0), "cache_cleared": True } )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sophia-labs/mnemosyne-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server