Skip to main content
Glama

call_databricks_tool

Execute Databricks-hosted tools through the MCP proxy by specifying tool names and arguments for remote operations.

Instructions

Call a tool on the remote Databricks MCP server. Args: tool_name: Name of the tool to call (use list_databricks_tools to see available tools) arguments: Arguments to pass to the tool

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
tool_nameYes
argumentsNo

Implementation Reference

  • The @mcp.tool()-decorated handler function that implements the core logic of 'call_databricks_tool' by checking authentication and proxying the tool call to the DatabricksMCPProxy instance.
    @mcp.tool() def call_databricks_tool(tool_name: str, arguments: dict = {}) -> str: """ Call a tool on the remote Databricks MCP server. Args: tool_name: Name of the tool to call (use list_databricks_tools to see available tools) arguments: Arguments to pass to the tool """ if not state.authenticated or not state.proxy: return "Not authenticated. Call 'authenticate' first." try: result = state.proxy.call_tool(tool_name, arguments) if hasattr(result, 'content') and result.content: texts = [c.text for c in result.content if hasattr(c, 'text')] if texts: return "\n".join(texts) return str(result) except Exception as e: return f"Error calling tool '{tool_name}': {e}"
  • Supporting method in DatabricksMCPProxy class that performs the actual remote tool invocation via DatabricksMCPClient.call_tool in a thread pool.
    def call_tool(self, name: str, arguments: dict) -> Any: """Call a tool on the remote MCP server.""" if not self._mcp_client: raise RuntimeError("Not connected. Call connect() first.") with ThreadPoolExecutor() as executor: return executor.submit(self._mcp_client.call_tool, name, arguments or {}).result()
  • The @mcp.tool() decorator registers the 'call_databricks_tool' function with the FastMCP server.
    @mcp.tool()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/smaheshwari-ux/databricks-mcp-proxy'

If you have feedback or need assistance with the MCP directory API, please join our Discord server