Skip to main content
Glama

Prompt Auto-Optimizer MCP

by sloth-wq

gepa_record_trajectory

Track and log detailed execution steps, results, and metadata for prompt evaluations to analyze performance and optimize AI prompts using data-driven insights.

Instructions

Record execution trajectory for prompt evaluation

Input Schema

NameRequiredDescriptionDefault
executionStepsYesSequence of execution steps
metadataNoAdditional execution metadata (optional)
promptIdYesUnique identifier for the prompt candidate
resultYesFinal execution result and performance score
taskIdYesIdentifier for the specific task instance

Input Schema (JSON Schema)

{ "properties": { "executionSteps": { "description": "Sequence of execution steps", "items": { "properties": { "action": { "type": "string" }, "input": { "type": "object" }, "output": { "type": "object" }, "success": { "type": "boolean" }, "timestamp": { "type": "string" } }, "required": [ "action", "timestamp", "success" ], "type": "object" }, "type": "array" }, "metadata": { "description": "Additional execution metadata (optional)", "properties": { "executionTime": { "type": "number" }, "llmModel": { "type": "string" }, "tokenUsage": { "type": "number" } }, "type": "object" }, "promptId": { "description": "Unique identifier for the prompt candidate", "type": "string" }, "result": { "description": "Final execution result and performance score", "properties": { "output": { "type": "object" }, "score": { "type": "number" }, "success": { "type": "boolean" } }, "required": [ "success", "score" ], "type": "object" }, "taskId": { "description": "Identifier for the specific task instance", "type": "string" } }, "required": [ "promptId", "taskId", "executionSteps", "result" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sloth-wq/prompt-auto-optimizer-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server