Skip to main content
Glama

LLM Bridge MCP

by sjquant
main.py1.77 kB
from pydantic import BaseModel, Field from mcp.server.fastmcp import FastMCP from pydantic_ai import Agent from pydantic_ai.models import KnownModelName from pydantic_ai.usage import Usage mcp = FastMCP( "LLM Bridge", instructions="A simple MCP (Message Control Protocol) server that provides a unified interface to various LLM providers (OpenAI, Anthropic, Google, DeepSeek) using Pydantic AI.", ) class LLMResponse(BaseModel): """Response from an LLM.""" content: str model_name: str usage: Usage temperature: float @mcp.tool() async def run_llm( prompt: str, model_name: KnownModelName = Field( default="openai:gpt-4o-mini", description=f"Specific model name. Available models: {', '.join(KnownModelName.__args__)}", ), temperature: float = Field( default=0.7, description="Controls randomness (0.0 to 1.0)", ), max_tokens: int = Field( default=8192, description="Maximum number of tokens to generate", ), system_prompt: str = Field( default="", description="Optional system prompt to guide the model's behavior", ), ) -> str: """Run a prompt through an LLM and return the response.""" agent = Agent( model=model_name, system_prompt=system_prompt, ) response = await agent.run( prompt, model_settings={ "temperature": temperature, "max_tokens": max_tokens, }, ) res = LLMResponse( content=response.data, model_name=model_name, usage=response.usage(), temperature=temperature, ) return res.model_dump_json() def main(): print("Starting LLM Bridge MCP server...") mcp.run(transport="stdio")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sjquant/llm-bridge-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server