Skip to main content
Glama

mcp-see

An MCP server that gives AI agents eyes - the ability to observe and understand images without stuffing raw pixels into their context window.

Features

  • Multi-provider vision: Describe images using Gemini, OpenAI, or Claude

  • Object detection: Find objects with bounding boxes (Gemini)

  • Hierarchical analysis: Detect regions, then zoom in for detail

  • Precise color extraction: K-Means clustering in LAB color space

  • Color naming: Human-readable color names via color.pizza API

Installation

Run directly from GitHub with npx:

npx github:simen/mcp-see

Or clone and build locally:

git clone https://github.com/simen/mcp-see.git cd mcp-see npm install npm run build

MCP Client Configuration

Claude Desktop

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{ "mcpServers": { "mcp-see": { "command": "npx", "args": ["github:simen/mcp-see"], "env": { "GOOGLE_CLOUD_PROJECT": "your-project-id", "OPENAI_API_KEY": "sk-...", "ANTHROPIC_API_KEY": "sk-ant-..." } } } }

Other MCP Clients

The server runs on stdio transport. Configure your client to spawn npx github:simen/mcp-see.

Tools

describe

Get an AI-generated description of an image.

Input:

{ "image": "/path/to/image.png", "prompt": "What is shown in this image?", "provider": "gemini", "detail": "detailed" }

Example Output:

The image shows a vibrant and colorful salad bowl, viewed from directly above. The bowl is made of a light brown, possibly biodegradable material. The salad is composed of various ingredients arranged in distinct sections: two small white peeled eggs, sliced red tomatoes topped with chopped green onions, cubed seasoned tofu, bright green edamame beans, shredded purple cabbage, and julienned carrots...

detect

Detect objects and return bounding boxes. Uses Gemini for native bbox support.

Input:

{ "image": "/path/to/image.png", "prompt": "find all TV screens" }

Example Output:

{ "count": 3, "objects": [ { "id": 1, "label": "television", "bbox": [178, 245, 433, 818] }, { "id": 2, "label": "television", "bbox": [614, 518, 792, 898] }, { "id": 3, "label": "television", "bbox": [617, 198, 792, 493] } ] }

Coordinates are [ymin, xmin, ymax, xmax] normalized 0-1000.

describe_region

Crop to a bounding box and describe that region in detail.

Input:

{ "image": "/path/to/image.png", "bbox": [200, 200, 800, 800], "prompt": "describe this in detail", "provider": "gemini" }

Example Output:

{ "bbox": [200, 200, 800, 800], "description": "The image showcases a vibrant and colorful salad bowl in close-up. The bowl contains fresh ingredients including cubed tofu with a seasoned exterior, bright green edamame, sliced tomatoes, and shredded purple cabbage..." }

analyze_colors

Extract dominant colors from a region using K-Means clustering in LAB color space.

Input:

{ "image": "/path/to/image.png", "bbox": [100, 200, 400, 600], "top": 5 }

Example Output:

{ "dominant": [ { "hex": "#e6e6e5", "rgb": [230, 230, 229], "hsl": { "h": 60, "s": 2, "l": 90 }, "name": "Ambience White", "percentage": 75.91 }, { "hex": "#b16c39", "rgb": [177, 108, 57], "hsl": { "h": 26, "s": 51, "l": 46 }, "name": "Ginger Dough", "percentage": 15.91 } ], "average": { "hex": "#c4b8a8", "rgb": [196, 184, 168], "name": "Doeskin" }, "confidence": "high", "region": { "bbox": [100, 200, 400, 600], "size": [200, 150], "totalPixels": 30000 } }

The confidence field indicates color precision:

  • high: Flat colors (UI elements) - clusters are tight

  • medium: Mixed content

  • low: Photographs/gradients - colors are approximate

Workflows

Hierarchical Image Understanding

The power of mcp-see is in combining tools for progressive analysis:

1. describe(image) → "A shelf displaying various vintage electronics and TVs" 2. detect(image, "find all screens") → [{label: "television", bbox: [178, 245, 433, 818]}, ...] 3. describe_region(image, [178, 245, 433, 818]) → "A vintage CRT television with wood grain casing, displaying a test pattern. The screen shows horizontal color bars..." 4. analyze_colors(image, [178, 245, 433, 818]) → dominant: ["#2b1810" Espresso Bean, "#c4a882" Sandcastle, ...]

Design Reference Analysis

Extract implementation-ready specs from design mockups:

1. describe(image, "explain this UI to a web developer") → Layout structure, component hierarchy, spacing patterns 2. detect(image, "find all buttons") → Bounding boxes for each button 3. For each button: - describe_region() → Button label, icon, state - analyze_colors() → Exact color tokens for CSS

Environment Variables

Variable

Description

Required

GOOGLE_CLOUD_PROJECT

GCP project ID for Vertex AI

For Gemini

OPENAI_API_KEY

OpenAI API key

For OpenAI provider

ANTHROPIC_API_KEY

Anthropic API key

For Claude provider

Gemini uses Google Cloud Application Default Credentials (ADC). Run gcloud auth application-default login to authenticate.

Technical Details

Color Extraction Algorithm

The analyze_colors tool uses K-Means clustering in LAB color space:

  1. Convert pixels from RGB to LAB (perceptually uniform)

  2. Subsample to 50k pixels for performance

  3. K-Means++ initialization for better convergence

  4. Cluster centroids become dominant colors

  5. Convert back to RGB, name via color.pizza API

This approach groups perceptually similar colors together, working well for both flat UI colors and noisy photographs.

Bounding Box Format

All bounding boxes use [ymin, xmin, ymax, xmax] format with coordinates normalized to 0-1000. To convert to pixel coordinates:

const pixelX = (normalizedX / 1000) * imageWidth; const pixelY = (normalizedY / 1000) * imageHeight;

License

MIT

Install Server
A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/simen/mcp-see'

If you have feedback or need assistance with the MCP directory API, please join our Discord server