Skip to main content
Glama
chroma.py9.29 kB
import logging from pydantic import BaseModel try: import chromadb from chromadb.config import Settings except ImportError as err: raise ImportError( "The 'chromadb' library is required. Please install it using 'pip install chromadb'." ) from err from selfmemory.vector_stores.base import VectorStoreBase logger = logging.getLogger(__name__) class OutputData(BaseModel): id: str | None # memory id score: float | None # distance payload: dict | None # metadata class ChromaDB(VectorStoreBase): def __init__( self, collection_name: str, client: chromadb.Client | None = None, host: str | None = None, port: int | None = None, path: str | None = None, api_key: str | None = None, tenant: str | None = None, ): """ Initialize the Chromadb vector store. Args: collection_name (str): Name of the collection. client (chromadb.Client, optional): Existing chromadb client instance. Defaults to None. host (str, optional): Host address for chromadb server. Defaults to None. port (int, optional): Port for chromadb server. Defaults to None. path (str, optional): Path for local chromadb database. Defaults to None. api_key (str, optional): ChromaDB Cloud API key. Defaults to None. tenant (str, optional): ChromaDB Cloud tenant ID. Defaults to None. """ if client: self.client = client elif api_key and tenant: # Initialize ChromaDB Cloud client logger.info("Initializing ChromaDB Cloud client") self.client = chromadb.CloudClient( api_key=api_key, tenant=tenant, database="selfmemory", # Use fixed database name for cloud ) else: # Initialize local or server client self.settings = Settings(anonymized_telemetry=False) if host and port: self.settings.chroma_server_host = host self.settings.chroma_server_http_port = port self.settings.chroma_api_impl = "chromadb.api.fastapi.FastAPI" else: if path is None: path = "db" self.settings.persist_directory = path self.settings.is_persistent = True self.client = chromadb.Client(self.settings) self.collection_name = collection_name self.collection = self.create_col(collection_name) def _parse_output(self, data: dict) -> list[OutputData]: """ Parse the output data. Args: data (Dict): Output data. Returns: List[OutputData]: Parsed output data. """ keys = ["ids", "distances", "metadatas"] values = [] for key in keys: value = data.get(key, []) if isinstance(value, list) and value and isinstance(value[0], list): value = value[0] values.append(value) ids, distances, metadatas = values max_length = max( len(v) for v in values if isinstance(v, list) and v is not None ) result = [] for i in range(max_length): entry = OutputData( id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None, score=( distances[i] if isinstance(distances, list) and distances and i < len(distances) else None ), payload=( metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None ), ) result.append(entry) return result def create_col(self, name: str, embedding_fn: callable | None = None): """ Create a new collection. Args: name (str): Name of the collection. embedding_fn (Optional[callable]): Embedding function to use. Defaults to None. Returns: chromadb.Collection: The created or retrieved collection. """ collection = self.client.get_or_create_collection( name=name, embedding_function=embedding_fn, ) return collection def insert( self, vectors: list[list], payloads: list[dict] | None = None, ids: list[str] | None = None, ): """ Insert vectors into a collection. Args: vectors (List[list]): List of vectors to insert. payloads (Optional[List[Dict]], optional): List of payloads corresponding to vectors. Defaults to None. ids (Optional[List[str]], optional): List of IDs corresponding to vectors. Defaults to None. """ logger.info( f"Inserting {len(vectors)} vectors into collection {self.collection_name}" ) self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads) def search( self, query: str, vectors: list[list], limit: int = 5, filters: dict | None = None, ) -> list[OutputData]: """ Search for similar vectors. Args: query (str): Query. vectors (List[list]): List of vectors to search. limit (int, optional): Number of results to return. Defaults to 5. filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None. Returns: List[OutputData]: Search results. """ where_clause = self._generate_where_clause(filters) if filters else None results = self.collection.query( query_embeddings=vectors, where=where_clause, n_results=limit ) final_results = self._parse_output(results) return final_results def delete(self, vector_id: str): """ Delete a vector by ID. Args: vector_id (str): ID of the vector to delete. """ self.collection.delete(ids=vector_id) def update( self, vector_id: str, vector: list[float] | None = None, payload: dict | None = None, ): """ Update a vector and its payload. Args: vector_id (str): ID of the vector to update. vector (Optional[List[float]], optional): Updated vector. Defaults to None. payload (Optional[Dict], optional): Updated payload. Defaults to None. """ self.collection.update(ids=vector_id, embeddings=vector, metadatas=payload) def get(self, vector_id: str) -> OutputData: """ Retrieve a vector by ID. Args: vector_id (str): ID of the vector to retrieve. Returns: OutputData: Retrieved vector. """ result = self.collection.get(ids=[vector_id]) return self._parse_output(result)[0] def list_cols(self) -> list[chromadb.Collection]: """ List all collections. Returns: List[chromadb.Collection]: List of collections. """ return self.client.list_collections() def delete_col(self): """ Delete a collection. """ self.client.delete_collection(name=self.collection_name) def col_info(self) -> dict: """ Get information about a collection. Returns: Dict: Collection information. """ return self.client.get_collection(name=self.collection_name) def list(self, filters: dict | None = None, limit: int = 100) -> list[OutputData]: """ List all vectors in a collection. Args: filters (Optional[Dict], optional): Filters to apply to the list. Defaults to None. limit (int, optional): Number of vectors to return. Defaults to 100. Returns: List[OutputData]: List of vectors. """ where_clause = self._generate_where_clause(filters) if filters else None results = self.collection.get(where=where_clause, limit=limit) return [self._parse_output(results)] def reset(self): """Reset the index by deleting and recreating it.""" logger.warning(f"Resetting index {self.collection_name}...") self.delete_col() self.collection = self.create_col(self.collection_name) @staticmethod def _generate_where_clause(where: dict[str, any]) -> dict[str, any]: """ Generate a properly formatted where clause for ChromaDB. Args: where (dict[str, any]): The filter conditions. Returns: dict[str, any]: Properly formatted where clause for ChromaDB. """ # If only one filter is supplied, return it as is # (no need to wrap in $and based on chroma docs) if where is None: return {} if len(where.keys()) <= 1: return where where_filters = [] for k, v in where.items(): if isinstance(v, str): where_filters.append({k: v}) return {"$and": where_filters}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shrijayan/SelfMemory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server