Skip to main content
Glama
setup.py1.83 kB
import json import os import uuid from pathlib import Path # Set up the directory path VECTOR_ID = str(uuid.uuid4()) home_dir = Path("~").expanduser() selfmemory_dir = ( Path(os.environ.get("SELFMEMORY_DIR")) if os.environ.get("SELFMEMORY_DIR") else home_dir / ".selfmemory" ) selfmemory_dir.mkdir(parents=True, exist_ok=True) def setup_config(): config_path = selfmemory_dir / "config.json" if not config_path.exists(): user_id = str(uuid.uuid4()) config = {"user_id": user_id} with config_path.open("w") as config_file: json.dump(config, config_file, indent=4) def get_user_id(): config_path = selfmemory_dir / "config.json" if not config_path.exists(): return "anonymous_user" try: with config_path.open() as config_file: config = json.load(config_file) user_id = config.get("user_id") return user_id except Exception: return "anonymous_user" def get_or_create_user_id(vector_store): """Store user_id in vector store and return it.""" user_id = get_user_id() # Try to get existing user_id from vector store try: existing = vector_store.get(vector_id=user_id) if ( existing and hasattr(existing, "payload") and existing.payload and "user_id" in existing.payload ): return existing.payload["user_id"] except Exception: pass # If we get here, we need to insert the user_id try: dims = getattr(vector_store, "embedding_model_dims", 1536) vector_store.insert( vectors=[[0.1] * dims], payloads=[{"user_id": user_id, "type": "user_identity"}], ids=[user_id], ) except Exception: pass return user_id

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shrijayan/SelfMemory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server