import subprocess
import sys
from typing import Literal
from selfmemory.configs.embeddings.base import BaseEmbedderConfig
from selfmemory.embeddings.base import EmbeddingBase
try:
from ollama import Client
except ImportError:
user_input = input("The 'ollama' library is required. Install it now? [y/N]: ")
if user_input.lower() == "y":
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "ollama"])
from ollama import Client
except subprocess.CalledProcessError:
print(
"Failed to install 'ollama'. Please install it manually using 'pip install ollama'."
)
sys.exit(1)
else:
print("The required 'ollama' library is not installed.")
sys.exit(1)
class OllamaEmbedding(EmbeddingBase):
def __init__(self, config: BaseEmbedderConfig | None = None):
super().__init__(config)
self.config.model = self.config.model or "nomic-embed-text"
self.config.embedding_dims = self.config.embedding_dims or 512
self.client = Client(host=self.config.ollama_base_url)
self._ensure_model_exists()
def _ensure_model_exists(self):
"""
Ensure the specified model exists locally. If not, pull it from Ollama.
"""
local_models = self.client.list()["models"]
if not any(
model.get("name") == self.config.model
or model.get("model") == self.config.model
for model in local_models
):
self.client.pull(self.config.model)
def embed(
self, text, memory_action: Literal["add", "search", "update"] | None = None
):
"""
Get the embedding for the given text using Ollama.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
response = self.client.embeddings(model=self.config.model, prompt=text)
return response["embedding"]