Skip to main content
Glama

Local RAG

ingest_file

Add documents to your local vector database for semantic search. Supports PDF, DOCX, TXT, and Markdown files to build searchable knowledge bases.

Instructions

Ingest a document file (PDF, DOCX, TXT, MD) into the vector database for semantic search. File path must be an absolute path. Supports re-ingestion to update existing documents.

Input Schema

NameRequiredDescriptionDefault
filePathYesAbsolute path to the file to ingest. Example: "/Users/user/documents/manual.pdf"

Input Schema (JSON Schema)

{ "properties": { "filePath": { "description": "Absolute path to the file to ingest. Example: \"/Users/user/documents/manual.pdf\"", "type": "string" } }, "required": [ "filePath" ], "type": "object" }

Other Tools from Local RAG

Related Tools

    MCP directory API

    We provide all the information about MCP servers via our MCP API.

    curl -X GET 'https://glama.ai/api/mcp/v1/servers/shinpr/mcp-local-rag'

    If you have feedback or need assistance with the MCP directory API, please join our Discord server