Skip to main content
Glama

DocNav-MCP

by shenyimings
Apache 2.0
2

DocNav MCP Server

DocNav is a Model Context Protocol (MCP) server which empowers LLM Agents to read, analyze, and manage lengthy documents intelligently, mimicking human-like comprehension and navigation capabilities.

Features

  • Document Navigation: Navigate through document sections, headings, and content structure
  • Content Extraction: Extract and summarize specific document sections
  • Search & Query: Find specific content within documents using intelligent search
  • Multi-format Support: Currently supports Markdown (.md) files, with planned support for PDF and other formats
  • MCP Integration: Seamless integration with MCP-compatible LLMs and applications

Architecture

DocNav follows a modular, extensible architecture:

  • Core MCP Server: Main server implementation using the MCP protocol
  • Document Processors: Pluggable processors for different file types
  • Navigation Engine: Handles document structure analysis and navigation
  • Content Extractors: Extract and format content from documents
  • Search Engine: Provides search and query capabilities across documents

Installation

Prerequisites

  • Python 3.10+
  • uv package manager

Setup

  1. Clone the repository:
git clone https://github.com/shenyimings/DocNav-MCP.git cd DocNav-MCP
  1. Install dependencies:
uv sync

Usage

Starting the MCP Server

uv run server.py

Connect to the MCP server

{ "mcpServers": { "docnav": { "command": "{{PATH_TO_UV}}", // Run `which uv` and place the output here "args": [ "--directory", "{{PATH_TO_SRC}}", "run", "server.py" ] } } }

Available Tools

  • load_document: Load a document for navigation and analysis
    • Args: file_path (path to document file)
    • Returns: Success message with auto-generated document ID
  • get_outline: Get document outline/table of contents
    • Args: doc_id (document identifier), max_depth (max heading depth, default 3)
    • Returns: Formatted document outline
    • Tip: Use first after loading a document to understand structure
  • read_section: Read content of a specific document section
    • Args: doc_id (document identifier), section_id (e.g., 'h1_0', 'h2_1')
    • Returns: Section content with subsections
  • search_document: Search for specific content within a document
    • Args: doc_id (document identifier), query (search term or phrase)
    • Returns: Formatted search results with context
  • navigate_section: Get navigation context for a section
    • Args: doc_id (document identifier), section_id (section to navigate to)
    • Returns: Navigation context with parent, siblings, children
  • list_documents: List all currently loaded documents
    • Returns: List of loaded documents with metadata
  • get_document_stats: Get statistics about a loaded document
    • Args: doc_id (document identifier)
    • Returns: Document statistics and structure info
  • remove_document: Remove a document from the navigator
    • Args: doc_id (document identifier)
    • Returns: Success or error message

Example Usage

# Load a document result = await tools.load_document("path/to/document.md") # Get document outline outline = await tools.get_outline(doc_id) # Get specific section content section = await tools.read_section(doc_id, section_id) # Search within document results = await tools.search_document(doc_id, "search query")

Development

Project Structure

docnav-mcp/ --- server.py # Main MCP server --- docnav/ ------- __init__.py # Package initialization ------- models.py # Data models ------- navigator.py # Document navigation engine ------- processors/ ------- __init__.py # Processor package ------- base.py # Base processor interface ------- markdown.py # Markdown processor --- tests/ ------- ... # Test files

Development Guidelines

See CLAUDE.md for detailed development guidelines including:

  • Code quality standards
  • Testing requirements
  • Package management with uv
  • Formatting and linting rules

Adding New Document Processors

  1. Create a new processor class inheriting from BaseProcessor
  2. Implement the required methods: can_process, process, extract_section, search
  3. Register the processor in the DocumentNavigator
  4. Add comprehensive tests

Running Tests

# Run all tests uv run tests/run_tests.py

Code Quality

# Format code uv run --frozen ruff format . # Check linting uv run --frozen ruff check . # Type checking uv run --frozen pyright

Roadmap

  • Complete Markdown processor implementation
  • Add PDF document support (PyMuPDF)
  • Improve test coverage and quality
  • Implement advanced search capabilities
  • Add document summarization features
  • Support for additional document formats (DOCX, TXT, etc.)
  • Performance optimizations for large documents
  • Caching mechanisms for frequently accessed documents
  • Add persistent storage for loaded documents

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Follow the development guidelines in CLAUDE.md
  4. Add tests for new functionality
  5. Submit a pull request

License

This project is licensed under the Apache-2.0 License - see the LICENSE file for details.

Support

For issues and questions:

  • Open an issue on GitHub
  • Check the documentation in CLAUDE.md
  • Review existing issues and discussions
-
security - not tested
A
license - permissive license
-
quality - not tested

DocNav is a Model Context Protocol (MCP) server which empowers LLM Agents to read, analyze, and manage lengthy documents intelligently, mimicking human-like comprehension and navigation capabilities.

Available Tools

  • load_document: Load a document for navigation and analysis
    • Args: `fi
  1. Features
    1. Architecture
      1. Installation
        1. Prerequisites
        2. Setup
      2. Usage
        1. Starting the MCP Server
        2. Connect to the MCP server
        3. Available Tools
        4. Example Usage
      3. Development
        1. Project Structure
        2. Development Guidelines
        3. Adding New Document Processors
        4. Running Tests
        5. Code Quality
      4. Roadmap
        1. Contributing
          1. License
            1. Support

              Related MCP Servers

              • A
                security
                A
                license
                A
                quality
                A Model Context Protocol implementation that enables AI assistants to interact with markdown documentation files, providing capabilities for document management, metadata handling, search, and documentation health analysis.
                Last updated -
                14
                346
                11
                TypeScript
                MIT License
                • Apple
                • Linux
              • -
                security
                A
                license
                -
                quality
                A Model Context Protocol implementation that enables AI-powered access to documentation resources, featuring URI-based navigation, template matching, and structured documentation management.
                Last updated -
                3
                Python
                MIT License
              • -
                security
                F
                license
                -
                quality
                A customized MCP server that enables integration between LLM applications and documentation sources, providing AI-assisted access to LangGraph and Model Context Protocol documentation.
                Last updated -
                1
                Python
                • Linux
                • Apple
              • -
                security
                F
                license
                -
                quality
                A Model Context Protocol server for ingesting, chunking and semantically searching documentation files, with support for markdown, Python, OpenAPI, HTML files and URLs.
                Last updated -
                Python
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/shenyimings/DocNav-MCP'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server