README.md•12.5 kB
[](https://mseep.ai/app/shariqriazz-vertex-ai-mcp-server)
# Vertex AI MCP Server
[](https://smithery.ai/server/@shariqriazz/vertex-ai-mcp-server)
This project implements a Model Context Protocol (MCP) server that provides a comprehensive suite of tools for interacting with Google Cloud's Vertex AI Gemini models, focusing on coding assistance and general query answering.
<a href="https://glama.ai/mcp/servers/@shariqriazz/vertex-ai-mcp-server">
<img width="380" height="200" src="https://glama.ai/mcp/servers/@shariqriazz/vertex-ai-mcp-server/badge" alt="Vertex AI Server MCP server" />
</a>
## Features
* Provides access to Vertex AI Gemini models via numerous MCP tools.
* Supports web search grounding (`answer_query_websearch`) and direct knowledge answering (`answer_query_direct`).
* Configurable model ID, temperature, streaming behavior, max output tokens, and retry settings via environment variables.
* Uses streaming API by default for potentially better responsiveness.
* Includes basic retry logic for transient API errors.
* Minimal safety filters applied (`BLOCK_NONE`) to reduce potential blocking (use with caution).
## Tools Provided
### Query & Generation (AI Focused)
* `answer_query_websearch`: Answers a natural language query using the configured Vertex AI model enhanced with Google Search results.
* `answer_query_direct`: Answers a natural language query using only the internal knowledge of the configured Vertex AI model.
* `explain_topic_with_docs`: Provides a detailed explanation for a query about a specific software topic by synthesizing information primarily from official documentation found via web search.
* `get_doc_snippets`: Provides precise, authoritative code snippets or concise answers for technical queries by searching official documentation.
* `generate_project_guidelines`: Generates a structured project guidelines document (Markdown) based on a specified list of technologies (optionally with versions), using web search for best practices.
### Research & Analysis Tools
* `code_analysis_with_docs`: Analyzes code snippets by comparing them with best practices from official documentation, identifying potential bugs, performance issues, and security vulnerabilities.
* `technical_comparison`: Compares multiple technologies, frameworks, or libraries based on specific criteria, providing detailed comparison tables with pros/cons and use cases.
* `architecture_pattern_recommendation`: Suggests architecture patterns for specific use cases based on industry best practices, with implementation examples and considerations.
* `dependency_vulnerability_scan`: Analyzes project dependencies for known security vulnerabilities, providing detailed information and mitigation strategies.
* `database_schema_analyzer`: Reviews database schemas for normalization, indexing, and performance issues, suggesting improvements based on database-specific best practices.
* `security_best_practices_advisor`: Provides security recommendations for specific technologies or scenarios, with code examples for implementing secure practices.
* `testing_strategy_generator`: Creates comprehensive testing strategies for applications or features, suggesting appropriate testing types with coverage goals.
* `regulatory_compliance_advisor`: Provides guidance on regulatory requirements for specific industries (GDPR, HIPAA, etc.), with implementation approaches for compliance.
* `microservice_design_assistant`: Helps design microservice architectures for specific domains, with service boundary recommendations and communication patterns.
* `documentation_generator`: Creates comprehensive documentation for code, APIs, or systems, following industry best practices for technical documentation.
### Filesystem Operations
* `read_file_content`: Read the complete contents of one or more files. Provide a single path string or an array of path strings.
* `write_file_content`: Create new files or completely overwrite existing files. The 'writes' argument accepts a single object (`{path, content}`) or an array of such objects.
* `edit_file_content`: Makes line-based edits to a text file, returning a diff preview or applying changes.
* `list_directory_contents`: Lists files and directories directly within a specified path (non-recursive).
* `get_directory_tree`: Gets a recursive tree view of files and directories as JSON.
* `move_file_or_directory`: Moves or renames files and directories.
* `search_filesystem`: Recursively searches for files/directories matching a name pattern, with optional exclusions.
* `get_filesystem_info`: Retrieves detailed metadata (size, dates, type, permissions) about a file or directory.
* `execute_terminal_command`: Execute a shell command, optionally specifying `cwd` and `timeout`. Returns stdout/stderr.
### Combined AI + Filesystem Operations
* `save_generate_project_guidelines`: Generates project guidelines based on a tech stack and saves the result to a specified file path.
* `save_doc_snippet`: Finds code snippets from documentation and saves the result to a specified file path.
* `save_topic_explanation`: Generates a detailed explanation of a topic based on documentation and saves the result to a specified file path.
* `save_answer_query_direct`: Answers a query using only internal knowledge and saves the answer to a specified file path.
* `save_answer_query_websearch`: Answers a query using web search results and saves the answer to a specified file path.
*(Note: Input/output schemas for each tool are defined in their respective files within `src/tools/` and exposed via the MCP server.)*
## Prerequisites
* Node.js (v18+)
* Bun (`npm install -g bun`)
* Google Cloud Project with Billing enabled.
* Vertex AI API enabled in the GCP project.
* Google Cloud Authentication configured in your environment (Application Default Credentials via `gcloud auth application-default login` is recommended, or a Service Account Key).
## Setup & Installation
1. **Clone/Place Project:** Ensure the project files are in your desired location.
2. **Install Dependencies:**
```bash
bun install
```
3. **Configure Environment:**
* Create a `.env` file in the project root (copy `.env.example`).
* Set the required and optional environment variables as described in `.env.example`.
* Set `AI_PROVIDER` to either `"vertex"` or `"gemini"`.
* If `AI_PROVIDER="vertex"`, `GOOGLE_CLOUD_PROJECT` is required.
* If `AI_PROVIDER="gemini"`, `GEMINI_API_KEY` is required.
4. **Build the Server:**
```bash
bun run build
```
This compiles the TypeScript code to `build/index.js`.
## Usage (Standalone / NPX)
Once published to npm, you can run this server directly using `npx`:
```bash
# Ensure required environment variables are set (e.g., GOOGLE_CLOUD_PROJECT)
bunx vertex-ai-mcp-server
```
Alternatively, install it globally:
```bash
bun install -g vertex-ai-mcp-server
# Then run:
vertex-ai-mcp-server
```
**Note:** Running standalone requires setting necessary environment variables (like `GOOGLE_CLOUD_PROJECT`, `GOOGLE_CLOUD_LOCATION`, authentication credentials if not using ADC) in your shell environment before executing the command.
### Installing via Smithery
To install Vertex AI Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@shariqriazz/vertex-ai-mcp-server):
```bash
bunx -y @smithery/cli install @shariqriazz/vertex-ai-mcp-server --client claude
```
## Running with Cline
1. **Configure MCP Settings:** Add/update the configuration in your Cline MCP settings file (e.g., `.roo/mcp.json`). You have two primary ways to configure the command:
**Option A: Using Node (Direct Path - Recommended for Development)**
This method uses `node` to run the compiled script directly. It's useful during development when you have the code cloned locally.
```json
{
"mcpServers": {
"vertex-ai-mcp-server": {
"command": "node",
"args": [
"/full/path/to/your/vertex-ai-mcp-server/build/index.js" // Use absolute path or ensure it's relative to where Cline runs node
],
"env": {
// --- General AI Configuration ---
"AI_PROVIDER": "vertex", // "vertex" or "gemini"
// --- Required (Conditional) ---
"GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex"
// "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini"
// --- Optional Model Selection ---
"VERTEX_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="vertex" (Example override)
"GEMINI_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="gemini"
// --- Optional AI Parameters ---
"GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI
"AI_TEMPERATURE": "0.0",
"AI_USE_STREAMING": "true",
"AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example
"AI_MAX_RETRIES": "3",
"AI_RETRY_DELAY_MS": "1000",
// --- Optional Vertex Authentication ---
// "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex
},
"disabled": false,
"alwaysAllow": [
// Add tool names here if you don't want confirmation prompts
// e.g., "answer_query_websearch"
],
"timeout": 3600 // Optional: Timeout in seconds
}
// Add other servers here...
}
}
```
* **Important:** Ensure the `args` path points correctly to the `build/index.js` file. Using an absolute path might be more reliable.
**Option B: Using NPX (Requires Package Published to npm)**
This method uses `npx` to automatically download and run the server package from the npm registry. This is convenient if you don't want to clone the repository.
```json
{
"mcpServers": {
"vertex-ai-mcp-server": {
"command": "bunx", // Use bunx
"args": [
"-y", // Auto-confirm installation
"vertex-ai-mcp-server" // The npm package name
],
"env": {
// --- General AI Configuration ---
"AI_PROVIDER": "vertex", // "vertex" or "gemini"
// --- Required (Conditional) ---
"GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex"
// "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini"
// --- Optional Model Selection ---
"VERTEX_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="vertex" (Example override)
"GEMINI_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="gemini"
// --- Optional AI Parameters ---
"GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI
"AI_TEMPERATURE": "0.0",
"AI_USE_STREAMING": "true",
"AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example
"AI_MAX_RETRIES": "3",
"AI_RETRY_DELAY_MS": "1000",
// --- Optional Vertex Authentication ---
// "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex
},
"disabled": false,
"alwaysAllow": [
// Add tool names here if you don't want confirmation prompts
// e.g., "answer_query_websearch"
],
"timeout": 3600 // Optional: Timeout in seconds
}
// Add other servers here...
}
}
```
* Ensure the environment variables in the `env` block are correctly set, either matching `.env` or explicitly defined here. Remove comments from the actual JSON file.
2. **Restart/Reload Cline:** Cline should detect the configuration change and start the server.
3. **Use Tools:** You can now use the extensive list of tools via Cline.
## Development
* **Watch Mode:** `bun run watch`
* **Linting:** `bun run lint`
* **Formatting:** `bun run format`
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.