Skip to main content
Glama

OpenAI SDK Knowledge MCP Server

by seratch
AGENTS.md3.56 kB
# AGENTS.md - Guide for AI Coding Agents This file is a quick reference for AI coding agents such as **Codex** and **Codex CLI**. It summarises the project purpose, directory layout, development workflow, and verification steps required before submitting any patch. ## Project Overview - **Name:** OpenAI SDK Knowledge MCP - **Description:** Serverless MCP (Model Context Protocol) server offering expert-level answers about OpenAI API usage, built with TypeScript, Cloudflare Workers, and OpenAI agents. - **Entry Point:** `src/index.ts` (Cloudflare Worker) - **Documentation:** See [README.md](README.md) for full project overview, architecture, and external guides. ## Repository Structure ``` src/ ├─ agents/ # AI agent implementations (RAG, translation, summarization, etc.) ├─ pipeline/ # Data collectors and processors (GitHub, forums, embeddings) ├─ server/ # HTTP endpoints (MCP, web API) and middleware ├─ storage/ # Vector store and database initialization ├─ utils/ # Shared utilities (logger, rate limiter) └─ index.ts # Worker bootstrap src/__tests__/ # Unit and integration tests package.json # Scripts: build, dev, test, lint, deploy wrangler.toml # Cloudflare Workers configuration ``` ## Environment Setup 1. Ensure **Node.js >=22** is installed. 2. Install dependencies: ```bash npm install ``` 3. Copy env template and set keys: ```bash cp .dev.vars.example .dev.vars # Edit .dev.vars: add OPENAI_API_KEY, GITHUB_TOKEN (optional), etc. ``` ## Development Workflow 1. **Start development environment**: - Run `npm run dev` 2. **Target endpoints**: - Web UI: `http://localhost:8787` - MCP server: `POST http://localhost:8787/mcp` (requires an api token) - Web API: `POST http://localhost:8787/api/query` (requires a logged in session) **Note:** Avoid running production scripts such as `npm run deploy:prod` or `npm run db:migrate:prod` from this environment. ## Building & Linting - `npm run build` : Compile TypeScript - `npm run type-check` : TypeScript type-check - `npm run lint` : ESLint checks - `npm run format` : Prettier formatting ## Testing & Verification 1. **Run tests**: ```bash npm test # Type-check + Jest npm run test:watch npm run test:coverage ``` 2. **Verify code generation patches**: - Ensure `npm run build` succeeds without errors. - Run `npm run lint` and confirm there are no ESLint issues. - Confirm all tests pass (CI-like check). - Manually exercise critical endpoints (e.g., health check, sample query). - Review logs for unexpected warnings/errors. ## Patch Best Practices - **Scope:** Keep patches minimal and focused on the user’s request. - **Root Cause Fixes:** Address underlying issues, not just symptoms. - **Tests:** Add or update tests when behavior changes. - **Documentation:** Update README.md or other relevant files if interfaces or workflows change. - **Style:** Follow existing code conventions; use ESLint/Prettier. - **Verification:** Always run build, lint, and test suite before finalizing. ## Committing Changes - Use `apply_patch` for modifications. - Do not manually commit; commit messages are auto-generated. - Remove any debug code or commented-out blocks. - Run `git status` to ensure the working tree is clean before committing. --- For detailed guides on local development, deployment, and troubleshooting, refer to [README.md](README.md) and [CLAUDE.md](CLAUDE.md).

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seratch/openai-sdk-knowledge-org'

If you have feedback or need assistance with the MCP directory API, please join our Discord server