Skip to main content
Glama
senseisven

MCP Remote macOS Control Server

by senseisven
web_app_development_plan.mdβ€’11.5 kB
# AI macOS Control Web App - Development Plan ## 🎯 Project Overview **Goal**: Build a web-based AI chatbot that can control macOS through the existing MCP server **Target**: Proof of Concept β†’ Production Ready App **Timeline**: 2-3 weeks for MVP, 4-6 weeks for production version ## πŸ—οΈ Architecture Overview ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Frontend │────▢│ Backend │────▢│ MCP Server β”‚ β”‚ (React/Next.js) β”‚ β”‚ (Node.js/Express) β”‚ β”‚ (Python) β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β€’ Chat Interface β”‚ β”‚ β€’ WebSocket Server β”‚ β”‚ β€’ macOS Control β”‚ β”‚ β€’ Real-time Updates β”‚ β”‚ β€’ LLM Integration β”‚ β”‚ β€’ VNC Client β”‚ β”‚ β€’ Image Display β”‚ β”‚ β€’ MCP Client β”‚ β”‚ β€’ Action Handlers β”‚ β”‚ β€’ Loading States β”‚ β”‚ β€’ Session Managementβ”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ WebSocket/HTTP LLM APIs Local macOS ``` ## πŸ“š Technology Stack ### Frontend - **Framework**: Next.js 14 (React + TypeScript) - **Styling**: Tailwind CSS + Headless UI - **Real-time**: Socket.IO Client - **State Management**: Zustand (lightweight) - **HTTP Client**: Axios - **UI Components**: Custom chat components ### Backend - **Runtime**: Node.js 18+ - **Framework**: Express.js - **Real-time**: Socket.IO - **MCP Client**: Custom implementation - **LLM Integration**: OpenAI SDK / Anthropic SDK - **Process Management**: PM2 (production) ### DevOps & Tools - **Package Manager**: npm/yarn - **Development**: Nodemon, Concurrently - **Testing**: Jest, Cypress - **Linting**: ESLint, Prettier - **Version Control**: Git ## πŸ“ Project Structure ``` macos-ai-chat/ β”œβ”€β”€ README.md β”œβ”€β”€ package.json β”œβ”€β”€ next.config.js β”œβ”€β”€ tailwind.config.js β”œβ”€β”€ tsconfig.json β”‚ β”œβ”€β”€ frontend/ # Next.js Frontend β”‚ β”œβ”€β”€ src/ β”‚ β”‚ β”œβ”€β”€ components/ β”‚ β”‚ β”‚ β”œβ”€β”€ Chat/ β”‚ β”‚ β”‚ β”‚ β”œβ”€β”€ ChatInterface.tsx β”‚ β”‚ β”‚ β”‚ β”œβ”€β”€ MessageBubble.tsx β”‚ β”‚ β”‚ β”‚ β”œβ”€β”€ InputArea.tsx β”‚ β”‚ β”‚ β”‚ └── TypingIndicator.tsx β”‚ β”‚ β”‚ β”œβ”€β”€ UI/ β”‚ β”‚ β”‚ β”‚ β”œβ”€β”€ Button.tsx β”‚ β”‚ β”‚ β”‚ β”œβ”€β”€ Loading.tsx β”‚ β”‚ β”‚ β”‚ └── Modal.tsx β”‚ β”‚ β”‚ └── Layout/ β”‚ β”‚ β”‚ β”œβ”€β”€ Header.tsx β”‚ β”‚ β”‚ └── Sidebar.tsx β”‚ β”‚ β”œβ”€β”€ hooks/ β”‚ β”‚ β”‚ β”œβ”€β”€ useSocket.ts β”‚ β”‚ β”‚ β”œβ”€β”€ useChat.ts β”‚ β”‚ β”‚ └── useLocalStorage.ts β”‚ β”‚ β”œβ”€β”€ stores/ β”‚ β”‚ β”‚ β”œβ”€β”€ chatStore.ts β”‚ β”‚ β”‚ └── settingsStore.ts β”‚ β”‚ β”œβ”€β”€ types/ β”‚ β”‚ β”‚ β”œβ”€β”€ chat.ts β”‚ β”‚ β”‚ └── api.ts β”‚ β”‚ β”œβ”€β”€ utils/ β”‚ β”‚ β”‚ β”œβ”€β”€ formatters.ts β”‚ β”‚ β”‚ └── constants.ts β”‚ β”‚ └── pages/ β”‚ β”‚ β”œβ”€β”€ index.tsx β”‚ β”‚ β”œβ”€β”€ settings.tsx β”‚ β”‚ └── api/ β”‚ └── public/ β”‚ β”œβ”€β”€ favicon.ico β”‚ └── images/ β”‚ β”œβ”€β”€ backend/ # Express.js Backend β”‚ β”œβ”€β”€ src/ β”‚ β”‚ β”œβ”€β”€ server.ts β”‚ β”‚ β”œβ”€β”€ config/ β”‚ β”‚ β”‚ β”œβ”€β”€ environment.ts β”‚ β”‚ β”‚ └── socket.ts β”‚ β”‚ β”œβ”€β”€ services/ β”‚ β”‚ β”‚ β”œβ”€β”€ mcpClient.ts β”‚ β”‚ β”‚ β”œβ”€β”€ llmService.ts β”‚ β”‚ β”‚ β”œβ”€β”€ chatService.ts β”‚ β”‚ β”‚ └── sessionService.ts β”‚ β”‚ β”œβ”€β”€ controllers/ β”‚ β”‚ β”‚ β”œβ”€β”€ chatController.ts β”‚ β”‚ β”‚ └── healthController.ts β”‚ β”‚ β”œβ”€β”€ middleware/ β”‚ β”‚ β”‚ β”œβ”€β”€ errorHandler.ts β”‚ β”‚ β”‚ β”œβ”€β”€ validation.ts β”‚ β”‚ β”‚ └── rateLimit.ts β”‚ β”‚ β”œβ”€β”€ routes/ β”‚ β”‚ β”‚ β”œβ”€β”€ chat.ts β”‚ β”‚ β”‚ └── health.ts β”‚ β”‚ β”œβ”€β”€ types/ β”‚ β”‚ β”‚ β”œβ”€β”€ mcp.ts β”‚ β”‚ β”‚ β”œβ”€β”€ llm.ts β”‚ β”‚ β”‚ └── chat.ts β”‚ β”‚ └── utils/ β”‚ β”‚ β”œβ”€β”€ logger.ts β”‚ β”‚ └── helpers.ts β”‚ └── package.json β”‚ β”œβ”€β”€ docker/ β”‚ β”œβ”€β”€ Dockerfile.frontend β”‚ β”œβ”€β”€ Dockerfile.backend β”‚ └── docker-compose.yml β”‚ β”œβ”€β”€ docs/ β”‚ β”œβ”€β”€ API.md β”‚ β”œβ”€β”€ DEPLOYMENT.md β”‚ └── TESTING.md β”‚ └── scripts/ β”œβ”€β”€ dev.sh β”œβ”€β”€ build.sh └── deploy.sh ``` ## πŸš€ Development Phases ### Phase 1: Foundation (Week 1) **Duration**: 3-4 days **Goal**: Basic working prototype #### 1.1 Project Setup (Day 1) - [ ] Initialize Next.js project with TypeScript - [ ] Set up Express.js backend - [ ] Configure Tailwind CSS - [ ] Set up basic project structure - [ ] Install and configure dependencies #### 1.2 Basic Chat Interface (Day 2) - [ ] Create basic chat layout - [ ] Implement message bubbles (user/assistant) - [ ] Add input area with send functionality - [ ] Set up WebSocket connection (frontend) - [ ] Basic styling and responsive design #### 1.3 Backend Foundation (Day 3) - [ ] Set up Express server with Socket.IO - [ ] Create basic WebSocket handlers - [ ] Implement health check endpoint - [ ] Set up environment configuration - [ ] Add basic logging #### 1.4 MCP Integration (Day 4) - [ ] Create MCP client service - [ ] Implement basic tool calling - [ ] Test screenshot functionality - [ ] Add error handling - [ ] Connect frontend to backend ### Phase 2: Core Features (Week 2) **Duration**: 5-6 days **Goal**: Full AI integration with macOS control #### 2.1 LLM Integration (Days 1-2) - [ ] Set up OpenAI/Anthropic API client - [ ] Implement function calling workflow - [ ] Create tool schema conversion (MCP β†’ LLM format) - [ ] Add conversation context management - [ ] Implement streaming responses #### 2.2 Advanced Chat Features (Days 3-4) - [ ] Add typing indicators - [ ] Implement message history persistence - [ ] Add image display for screenshots - [ ] Create loading states for tool execution - [ ] Add message timestamps and status #### 2.3 macOS Control Integration (Days 5-6) - [ ] Integrate all MCP tools: - [ ] Screenshot capture - [ ] Mouse click/move/scroll - [ ] Keyboard input - [ ] Application launching - [ ] Drag and drop - [ ] Add tool execution feedback - [ ] Implement coordinate scaling - [ ] Add safety confirmations for destructive actions ### Phase 3: Polish & Production (Week 3) **Duration**: 5-7 days **Goal**: Production-ready application #### 3.1 User Experience (Days 1-2) - [ ] Improve UI/UX design - [ ] Add dark/light theme - [ ] Implement settings panel - [ ] Add keyboard shortcuts - [ ] Mobile-responsive design #### 3.2 Error Handling & Validation (Days 3-4) - [ ] Comprehensive error handling - [ ] Input validation and sanitization - [ ] Rate limiting and spam protection - [ ] Connection retry logic - [ ] Graceful degradation #### 3.3 Testing & Deployment (Days 5-7) - [ ] Unit tests for critical functions - [ ] Integration tests for MCP communication - [ ] E2E tests for chat workflow - [ ] Performance optimization - [ ] Docker containerization - [ ] Deployment scripts ## πŸ”§ Key Implementation Details ### WebSocket Event Schema ```typescript // Client β†’ Server interface ClientEvents { 'chat_message': { message: string; sessionId: string; }; 'join_session': { sessionId: string; }; } // Server β†’ Client interface ServerEvents { 'chat_response': { message: string; type: 'text' | 'image' | 'error'; timestamp: number; }; 'typing_start': {}; 'typing_stop': {}; 'tool_execution_start': { toolName: string; }; 'tool_execution_complete': { toolName: string; success: boolean; }; } ``` ### MCP Tool Integration ```typescript interface MCPTool { name: string; description: string; inputSchema: object; } interface ToolCall { name: string; arguments: Record<string, any>; } interface ToolResult { success: boolean; data?: any; error?: string; } ``` ### LLM Integration Flow ```typescript // 1. User sends message // 2. Check if message requires tools // 3. Call LLM with available tools // 4. Execute tool calls via MCP // 5. Send results back to LLM // 6. Return final response to user ``` ## πŸ§ͺ Testing Strategy ### Unit Tests - MCP client functions - LLM service integration - Chat message processing - Tool result parsing ### Integration Tests - WebSocket communication - MCP server connectivity - End-to-end tool execution - Error handling flows ### E2E Tests - Complete chat workflow - Screenshot capture and display - Mouse/keyboard control - Application launching ## πŸ“Š Success Metrics ### Phase 1 Success Criteria - [ ] Chat interface loads and displays messages - [ ] WebSocket connection established - [ ] Basic screenshot tool works - [ ] No critical errors in console ### Phase 2 Success Criteria - [ ] All MCP tools integrated and working - [ ] LLM responds with appropriate tool calls - [ ] Real-time updates work smoothly - [ ] Error states handled gracefully ### Phase 3 Success Criteria - [ ] App works reliably for 30+ minutes - [ ] Responsive design on different screen sizes - [ ] Performance under normal usage loads - [ ] Ready for user testing ## πŸš€ Development Commands ```bash # Development npm run dev # Start both frontend and backend npm run dev:frontend # Start only frontend npm run dev:backend # Start only backend # Building npm run build # Build both frontend and backend npm run build:frontend npm run build:backend # Testing npm run test # Run all tests npm run test:unit # Unit tests only npm run test:e2e # E2E tests only # Deployment npm run deploy:staging npm run deploy:production ``` ## πŸ“‹ Environment Variables ```bash # Backend Environment NODE_ENV=development PORT=3001 OPENAI_API_KEY=your_openai_key ANTHROPIC_API_KEY=your_anthropic_key # MCP Server Configuration MACOS_HOST=localhost MACOS_PASSWORD=your_vnc_password MACOS_USERNAME=your_username MACOS_PORT=5900 # Optional: LiveKit for WebRTC LIVEKIT_URL=your_livekit_url LIVEKIT_API_KEY=your_api_key LIVEKIT_API_SECRET=your_api_secret ``` ## 🎯 Next Steps 1. **Confirm tech stack choices** 2. **Set up development environment** 3. **Begin Phase 1 implementation** 4. **Regular progress reviews** 5. **User testing and feedback** This plan provides a structured approach to building your AI macOS control web app. Each phase builds upon the previous one, ensuring steady progress toward a production-ready application. Would you like me to start implementing any specific part of this plan?

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/senseisven/mcp_macos'

If you have feedback or need assistance with the MCP directory API, please join our Discord server