# AI macOS Control Web App - Development Plan
## π― Project Overview
**Goal**: Build a web-based AI chatbot that can control macOS through the existing MCP server
**Target**: Proof of Concept β Production Ready App
**Timeline**: 2-3 weeks for MVP, 4-6 weeks for production version
## ποΈ Architecture Overview
```
βββββββββββββββββββββββ βββββββββββββββββββββββ βββββββββββββββββββββββ
β Frontend ββββββΆβ Backend ββββββΆβ MCP Server β
β (React/Next.js) β β (Node.js/Express) β β (Python) β
β β β β β β
β β’ Chat Interface β β β’ WebSocket Server β β β’ macOS Control β
β β’ Real-time Updates β β β’ LLM Integration β β β’ VNC Client β
β β’ Image Display β β β’ MCP Client β β β’ Action Handlers β
β β’ Loading States β β β’ Session Managementβ β β
βββββββββββββββββββββββ βββββββββββββββββββββββ βββββββββββββββββββββββ
β β β
β β β
WebSocket/HTTP LLM APIs Local macOS
```
## π Technology Stack
### Frontend
- **Framework**: Next.js 14 (React + TypeScript)
- **Styling**: Tailwind CSS + Headless UI
- **Real-time**: Socket.IO Client
- **State Management**: Zustand (lightweight)
- **HTTP Client**: Axios
- **UI Components**: Custom chat components
### Backend
- **Runtime**: Node.js 18+
- **Framework**: Express.js
- **Real-time**: Socket.IO
- **MCP Client**: Custom implementation
- **LLM Integration**: OpenAI SDK / Anthropic SDK
- **Process Management**: PM2 (production)
### DevOps & Tools
- **Package Manager**: npm/yarn
- **Development**: Nodemon, Concurrently
- **Testing**: Jest, Cypress
- **Linting**: ESLint, Prettier
- **Version Control**: Git
## π Project Structure
```
macos-ai-chat/
βββ README.md
βββ package.json
βββ next.config.js
βββ tailwind.config.js
βββ tsconfig.json
β
βββ frontend/ # Next.js Frontend
β βββ src/
β β βββ components/
β β β βββ Chat/
β β β β βββ ChatInterface.tsx
β β β β βββ MessageBubble.tsx
β β β β βββ InputArea.tsx
β β β β βββ TypingIndicator.tsx
β β β βββ UI/
β β β β βββ Button.tsx
β β β β βββ Loading.tsx
β β β β βββ Modal.tsx
β β β βββ Layout/
β β β βββ Header.tsx
β β β βββ Sidebar.tsx
β β βββ hooks/
β β β βββ useSocket.ts
β β β βββ useChat.ts
β β β βββ useLocalStorage.ts
β β βββ stores/
β β β βββ chatStore.ts
β β β βββ settingsStore.ts
β β βββ types/
β β β βββ chat.ts
β β β βββ api.ts
β β βββ utils/
β β β βββ formatters.ts
β β β βββ constants.ts
β β βββ pages/
β β βββ index.tsx
β β βββ settings.tsx
β β βββ api/
β βββ public/
β βββ favicon.ico
β βββ images/
β
βββ backend/ # Express.js Backend
β βββ src/
β β βββ server.ts
β β βββ config/
β β β βββ environment.ts
β β β βββ socket.ts
β β βββ services/
β β β βββ mcpClient.ts
β β β βββ llmService.ts
β β β βββ chatService.ts
β β β βββ sessionService.ts
β β βββ controllers/
β β β βββ chatController.ts
β β β βββ healthController.ts
β β βββ middleware/
β β β βββ errorHandler.ts
β β β βββ validation.ts
β β β βββ rateLimit.ts
β β βββ routes/
β β β βββ chat.ts
β β β βββ health.ts
β β βββ types/
β β β βββ mcp.ts
β β β βββ llm.ts
β β β βββ chat.ts
β β βββ utils/
β β βββ logger.ts
β β βββ helpers.ts
β βββ package.json
β
βββ docker/
β βββ Dockerfile.frontend
β βββ Dockerfile.backend
β βββ docker-compose.yml
β
βββ docs/
β βββ API.md
β βββ DEPLOYMENT.md
β βββ TESTING.md
β
βββ scripts/
βββ dev.sh
βββ build.sh
βββ deploy.sh
```
## π Development Phases
### Phase 1: Foundation (Week 1)
**Duration**: 3-4 days
**Goal**: Basic working prototype
#### 1.1 Project Setup (Day 1)
- [ ] Initialize Next.js project with TypeScript
- [ ] Set up Express.js backend
- [ ] Configure Tailwind CSS
- [ ] Set up basic project structure
- [ ] Install and configure dependencies
#### 1.2 Basic Chat Interface (Day 2)
- [ ] Create basic chat layout
- [ ] Implement message bubbles (user/assistant)
- [ ] Add input area with send functionality
- [ ] Set up WebSocket connection (frontend)
- [ ] Basic styling and responsive design
#### 1.3 Backend Foundation (Day 3)
- [ ] Set up Express server with Socket.IO
- [ ] Create basic WebSocket handlers
- [ ] Implement health check endpoint
- [ ] Set up environment configuration
- [ ] Add basic logging
#### 1.4 MCP Integration (Day 4)
- [ ] Create MCP client service
- [ ] Implement basic tool calling
- [ ] Test screenshot functionality
- [ ] Add error handling
- [ ] Connect frontend to backend
### Phase 2: Core Features (Week 2)
**Duration**: 5-6 days
**Goal**: Full AI integration with macOS control
#### 2.1 LLM Integration (Days 1-2)
- [ ] Set up OpenAI/Anthropic API client
- [ ] Implement function calling workflow
- [ ] Create tool schema conversion (MCP β LLM format)
- [ ] Add conversation context management
- [ ] Implement streaming responses
#### 2.2 Advanced Chat Features (Days 3-4)
- [ ] Add typing indicators
- [ ] Implement message history persistence
- [ ] Add image display for screenshots
- [ ] Create loading states for tool execution
- [ ] Add message timestamps and status
#### 2.3 macOS Control Integration (Days 5-6)
- [ ] Integrate all MCP tools:
- [ ] Screenshot capture
- [ ] Mouse click/move/scroll
- [ ] Keyboard input
- [ ] Application launching
- [ ] Drag and drop
- [ ] Add tool execution feedback
- [ ] Implement coordinate scaling
- [ ] Add safety confirmations for destructive actions
### Phase 3: Polish & Production (Week 3)
**Duration**: 5-7 days
**Goal**: Production-ready application
#### 3.1 User Experience (Days 1-2)
- [ ] Improve UI/UX design
- [ ] Add dark/light theme
- [ ] Implement settings panel
- [ ] Add keyboard shortcuts
- [ ] Mobile-responsive design
#### 3.2 Error Handling & Validation (Days 3-4)
- [ ] Comprehensive error handling
- [ ] Input validation and sanitization
- [ ] Rate limiting and spam protection
- [ ] Connection retry logic
- [ ] Graceful degradation
#### 3.3 Testing & Deployment (Days 5-7)
- [ ] Unit tests for critical functions
- [ ] Integration tests for MCP communication
- [ ] E2E tests for chat workflow
- [ ] Performance optimization
- [ ] Docker containerization
- [ ] Deployment scripts
## π§ Key Implementation Details
### WebSocket Event Schema
```typescript
// Client β Server
interface ClientEvents {
'chat_message': {
message: string;
sessionId: string;
};
'join_session': {
sessionId: string;
};
}
// Server β Client
interface ServerEvents {
'chat_response': {
message: string;
type: 'text' | 'image' | 'error';
timestamp: number;
};
'typing_start': {};
'typing_stop': {};
'tool_execution_start': {
toolName: string;
};
'tool_execution_complete': {
toolName: string;
success: boolean;
};
}
```
### MCP Tool Integration
```typescript
interface MCPTool {
name: string;
description: string;
inputSchema: object;
}
interface ToolCall {
name: string;
arguments: Record<string, any>;
}
interface ToolResult {
success: boolean;
data?: any;
error?: string;
}
```
### LLM Integration Flow
```typescript
// 1. User sends message
// 2. Check if message requires tools
// 3. Call LLM with available tools
// 4. Execute tool calls via MCP
// 5. Send results back to LLM
// 6. Return final response to user
```
## π§ͺ Testing Strategy
### Unit Tests
- MCP client functions
- LLM service integration
- Chat message processing
- Tool result parsing
### Integration Tests
- WebSocket communication
- MCP server connectivity
- End-to-end tool execution
- Error handling flows
### E2E Tests
- Complete chat workflow
- Screenshot capture and display
- Mouse/keyboard control
- Application launching
## π Success Metrics
### Phase 1 Success Criteria
- [ ] Chat interface loads and displays messages
- [ ] WebSocket connection established
- [ ] Basic screenshot tool works
- [ ] No critical errors in console
### Phase 2 Success Criteria
- [ ] All MCP tools integrated and working
- [ ] LLM responds with appropriate tool calls
- [ ] Real-time updates work smoothly
- [ ] Error states handled gracefully
### Phase 3 Success Criteria
- [ ] App works reliably for 30+ minutes
- [ ] Responsive design on different screen sizes
- [ ] Performance under normal usage loads
- [ ] Ready for user testing
## π Development Commands
```bash
# Development
npm run dev # Start both frontend and backend
npm run dev:frontend # Start only frontend
npm run dev:backend # Start only backend
# Building
npm run build # Build both frontend and backend
npm run build:frontend
npm run build:backend
# Testing
npm run test # Run all tests
npm run test:unit # Unit tests only
npm run test:e2e # E2E tests only
# Deployment
npm run deploy:staging
npm run deploy:production
```
## π Environment Variables
```bash
# Backend Environment
NODE_ENV=development
PORT=3001
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key
# MCP Server Configuration
MACOS_HOST=localhost
MACOS_PASSWORD=your_vnc_password
MACOS_USERNAME=your_username
MACOS_PORT=5900
# Optional: LiveKit for WebRTC
LIVEKIT_URL=your_livekit_url
LIVEKIT_API_KEY=your_api_key
LIVEKIT_API_SECRET=your_api_secret
```
## π― Next Steps
1. **Confirm tech stack choices**
2. **Set up development environment**
3. **Begin Phase 1 implementation**
4. **Regular progress reviews**
5. **User testing and feedback**
This plan provides a structured approach to building your AI macOS control web app. Each phase builds upon the previous one, ensuring steady progress toward a production-ready application.
Would you like me to start implementing any specific part of this plan?