Skip to main content
Glama

PyTorch Documentation Search Tool

index.py1.59 kB
#!/usr/bin/env python3 """ Database indexing script for PyTorch Documentation Search Tool. Loads embeddings into ChromaDB for vector search. """ import argparse import sys import os # Add parent directory to path sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from ptsearch.database import DatabaseManager from ptsearch.config import DEFAULT_EMBEDDINGS_PATH def main(): # Parse command line arguments parser = argparse.ArgumentParser(description="Index chunks into database") parser.add_argument("--input-file", type=str, default=DEFAULT_EMBEDDINGS_PATH, help="Input JSON file with chunks and embeddings") parser.add_argument("--batch-size", type=int, default=50, help="Batch size for database operations") parser.add_argument("--no-reset", action="store_true", help="Don't reset the collection before loading") parser.add_argument("--stats", action="store_true", help="Show database statistics after loading") args = parser.parse_args() # Initialize database manager db_manager = DatabaseManager() # Load chunks into database db_manager.load_from_file( args.input_file, reset=not args.no_reset, batch_size=args.batch_size ) # Show stats if requested if args.stats: stats = db_manager.get_stats() print("\nDatabase Statistics:") for key, value in stats.items(): print(f" {key}: {value}") if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanmichaelmcgee/pytorch-docs-refactored'

If you have feedback or need assistance with the MCP directory API, please join our Discord server