pdsolve_pde
Solve partial differential equations (PDEs) using SymPy's pdsolve function on the Symbolic Algebra MCP Server. Input expression key and function name to obtain a LaTeX-formatted solution, handling complex PDEs efficiently.
Instructions
Solves a partial differential equation using SymPy's pdsolve function.
Args:
expr_key: The key of the expression (previously introduced) containing the PDE.
If the expression is not an equation (Eq), it will be interpreted as
PDE = 0.
func_name: The name of the function (previously introduced) to solve for.
This should be a function of multiple variables.
Example:
# First introduce variables and a function
intro("x", [Assumption.REAL], [])
intro("y", [Assumption.REAL], [])
introduce_function("f")
# Create a PDE: 1 + 2*(ux/u) + 3*(uy/u) = 0
expr_key = introduce_expression(
"Eq(1 + 2*Derivative(f(x, y), x)/f(x, y) + 3*Derivative(f(x, y), y)/f(x, y), 0)"
)
# Solve the PDE
result = pdsolve_pde(expr_key, "f")
# Returns solution with exponential terms and arbitrary function
Returns:
A LaTeX string representing the solution. Returns an error message string if issues occur.
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
| expr_key | Yes | ||
| func_name | Yes | ||
| hint | No |