Skip to main content
Glama

Scenic MCP

update_real_usage.ts3.34 kB
#!/usr/bin/env node /** * Update real usage data with additional test scenarios */ import * as fs from 'fs'; const additionalTests = [ { scenario: "Process Management and Logs", userIntent: "App crashed, need to check what happened and see logs", toolsUsed: ["app_status", "get_app_logs"], toolsExpected: ["app_status", "get_app_logs"], success: true, issues: ["Perfect tool selection for debugging"] }, { scenario: "App Startup and Connection", userIntent: "Start Quillex text editor for development", toolsUsed: ["start_app", "connect_scenic"], toolsExpected: ["start_app", "connect_scenic"], success: true, issues: ["Logical flow: start then connect"] }, { scenario: "Interactive Development Session", userIntent: "See what's on screen in the running text editor, document with screenshot", toolsUsed: ["take_screenshot", "inspect_viewport"], toolsExpected: ["inspect_viewport", "take_screenshot", "connect_scenic"], success: true, issues: ["Used key visual tools, connection already established"] } ]; // Calculate updated metrics let totalToolsExpected = 9; // From first test: 3 + 2 + 2 + 3 = 10 wait let me recalculate totalToolsExpected = 3 + 2 + 2 + 3; // 10 total expected tools across 4 scenarios let totalToolsUsed = 8; // 2 + 2 + 2 + 2 = 8 tools actually used let totalCorrectUsage = 8; // All tools used were correct const discoveryRate = (totalToolsUsed / totalToolsExpected) * 100; // 80% const accuracyRate = (totalCorrectUsage / totalToolsUsed) * 100; // 100% console.log('\n📊 UPDATED REAL USAGE BASELINE'); console.log('===============================\n'); console.log(`📈 Claude's Baseline Performance (Before Enhancements):`); console.log(` Scenarios Tested: 4`); console.log(` Tool Discovery Rate: ${discoveryRate.toFixed(1)}%`); console.log(` Tool Accuracy Rate: ${accuracyRate.toFixed(1)}%`); console.log(` Combined Success Rate: ${((discoveryRate * accuracyRate) / 100).toFixed(1)}%\n`); console.log('📋 Test Results Summary:'); console.log('1. ✅ Visual Development: connect_scenic + take_screenshot (missed inspect_viewport)'); console.log('2. ✅ Process Management: app_status + get_app_logs (perfect)'); console.log('3. ✅ App Startup: start_app + connect_scenic (perfect)'); console.log('4. ✅ Interactive Development: take_screenshot + inspect_viewport (good)\n'); console.log('🎯 Baseline Insights:'); console.log('• Claude naturally discovers most relevant tools'); console.log('• 100% accuracy when tools are used'); console.log('• Missing some supplementary tools (inspect_viewport in scenario 1)'); console.log('• Good logical flow in tool sequencing'); console.log('• Room for improvement: 80% -> 90%+ discovery rate\n'); // Export updated baseline const baselineData = { timestamp: new Date().toISOString(), phase: 'baseline', scenarios: 4, metrics: { discoveryRate, accuracyRate, combinedSuccess: (discoveryRate * accuracyRate) / 100, totalToolsExpected, totalToolsUsed, totalCorrectUsage }, tests: additionalTests }; fs.writeFileSync('baseline_metrics.json', JSON.stringify(baselineData, null, 2)); console.log('📁 Baseline metrics saved to baseline_metrics.json'); console.log('\n🔧 Ready to apply enhancements and re-test!');

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/scenic-contrib/scenic_mcp_experimental'

If you have feedback or need assistance with the MCP directory API, please join our Discord server