Skip to main content
Glama
sayedpfe

MCP & Copilot Studio Learning Project

by sayedpfe
copilot-studio-integration.md•9.8 kB
# Copilot Studio Integration Guide Learn how to integrate your MCP servers with Microsoft Copilot Studio for enhanced AI experiences. ## Overview Copilot Studio allows you to create custom copilots that can use your MCP servers as data sources and tool providers. This guide covers the integration patterns and best practices. ## Key Concepts ### 1. Copilot Studio Architecture - **Topics**: Conversation flows and logic - **Entities**: Data types and structures - **Actions**: Custom operations and integrations - **Knowledge Sources**: External data and APIs ### 2. MCP Integration Points - **Custom Connectors**: Bridge MCP servers to Copilot Studio - **Power Automate Flows**: Orchestrate MCP tool calls - **Web APIs**: Expose MCP functionality via REST endpoints - **Direct Integration**: Native MCP protocol support (future) ## Integration Approaches ### Approach 1: REST API Wrapper Create a REST API that wraps your MCP server: ```typescript import express from 'express'; import { McpClient } from '@modelcontextprotocol/sdk/client/mcp.js'; const app = express(); app.use(express.json()); // Initialize MCP client const mcpClient = new McpClient(/* your transport */); // Expose MCP tools as REST endpoints app.post('/api/tools/:toolName', async (req, res) => { try { const { toolName } = req.params; const { arguments: toolArgs } = req.body; const result = await mcpClient.callTool({ name: toolName, arguments: toolArgs }); res.json(result); } catch (error) { res.status(500).json({ error: error.message }); } }); app.listen(3000, () => { console.log('MCP REST wrapper running on port 3000'); }); ``` ### Approach 2: Power Automate Flow 1. Create a Power Automate flow 2. Use HTTP connector to call your MCP REST wrapper 3. Parse responses and format for Copilot Studio 4. Return structured data ### Approach 3: Custom Connector Create a custom connector in Copilot Studio: ```yaml # OpenAPI definition for MCP tools openapi: 3.0.0 info: title: MCP Learning Server API version: 1.0.0 paths: /api/tools/calculate: post: summary: Perform calculations requestBody: content: application/json: schema: type: object properties: operation: type: string enum: [add, subtract, multiply, divide] a: type: number b: type: number responses: '200': description: Calculation result content: application/json: schema: type: object properties: result: type: number ``` ## Step-by-Step Integration ### Step 1: Prepare Your MCP Server Ensure your MCP server is robust and production-ready: ```typescript // Add health check endpoint server.tool( "health-check", "Check server health and status", {}, async () => ({ content: [{ type: "text", text: JSON.stringify({ status: "healthy", timestamp: new Date().toISOString(), uptime: process.uptime() }) }] }) ); // Add CORS support for web integration server.tool( "get-available-tools", "List all available tools", {}, async () => { const tools = [ { name: "calculate", description: "Perform basic arithmetic" }, { name: "text-utils", description: "Text manipulation utilities" } ]; return { content: [{ type: "text", text: JSON.stringify(tools, null, 2) }] }; } ); ``` ### Step 2: Create REST Wrapper Build a REST API to expose MCP functionality: ```typescript import express from 'express'; import cors from 'cors'; import { spawn } from 'child_process'; const app = express(); app.use(cors()); app.use(express.json()); class McpRestWrapper { private mcpProcess: any; async startMcpServer() { this.mcpProcess = spawn('node', ['build/index.js'], { stdio: ['pipe', 'pipe', 'inherit'] }); } async callTool(toolName: string, args: any) { const request = { jsonrpc: "2.0", id: 1, method: "tools/call", params: { name: toolName, arguments: args } }; return new Promise((resolve, reject) => { this.mcpProcess.stdin.write(JSON.stringify(request) + '\\n'); this.mcpProcess.stdout.once('data', (data: Buffer) => { try { const response = JSON.parse(data.toString()); resolve(response.result); } catch (error) { reject(error); } }); }); } } const wrapper = new McpRestWrapper(); wrapper.startMcpServer(); // Tool endpoints app.post('/api/calculate', async (req, res) => { try { const result = await wrapper.callTool('calculate', req.body); res.json(result); } catch (error) { res.status(500).json({ error: error.message }); } }); app.listen(3000); ``` ### Step 3: Configure Copilot Studio 1. **Create New Topic**: - Name: "Calculate Numbers" - Trigger phrases: "calculate", "do math", "compute" 2. **Add Variables**: - operation: Text - numberA: Number - numberB: Number 3. **Create Action**: - Type: HTTP Request - URL: `https://your-api.com/api/calculate` - Method: POST - Body: ```json { "operation": "{x:operation}", "a": {x:numberA}, "b": {x:numberB} } ``` 4. **Parse Response**: - Extract result from response - Format for user display ### Step 4: Test Integration 1. **Test REST API**: ```bash curl -X POST http://localhost:3000/api/calculate \\ -H "Content-Type: application/json" \\ -d '{"operation": "add", "a": 5, "b": 3}' ``` 2. **Test in Copilot Studio**: - Use the test pane - Try phrases like "calculate 5 plus 3" - Verify response formatting ## Best Practices ### 1. Error Handling ```typescript app.use((err: Error, req: any, res: any, next: any) => { console.error('Error:', err); res.status(500).json({ error: 'Internal server error', message: process.env.NODE_ENV === 'development' ? err.message : 'Something went wrong' }); }); ``` ### 2. Input Validation ```typescript import Joi from 'joi'; const calculateSchema = Joi.object({ operation: Joi.string().valid('add', 'subtract', 'multiply', 'divide').required(), a: Joi.number().required(), b: Joi.number().required() }); app.post('/api/calculate', async (req, res) => { const { error, value } = calculateSchema.validate(req.body); if (error) { return res.status(400).json({ error: error.details[0].message }); } // Process validated input }); ``` ### 3. Rate Limiting ```typescript import rateLimit from 'express-rate-limit'; const limiter = rateLimit({ windowMs: 15 * 60 * 1000, // 15 minutes max: 100 // limit each IP to 100 requests per windowMs }); app.use(limiter); ``` ### 4. Authentication ```typescript app.use('/api', (req, res, next) => { const apiKey = req.headers['x-api-key']; if (!apiKey || apiKey !== process.env.API_KEY) { return res.status(401).json({ error: 'Unauthorized' }); } next(); }); ``` ## Advanced Scenarios ### Multi-Tool Orchestration ```typescript app.post('/api/workflow/analyze-text', async (req, res) => { const { text } = req.body; // Step 1: Get text statistics const stats = await wrapper.callTool('text-utils', { operation: 'count', text: text }); // Step 2: Generate summary (hypothetical tool) const summary = await wrapper.callTool('summarize', { text: text, maxLength: 100 }); // Step 3: Analyze sentiment (hypothetical tool) const sentiment = await wrapper.callTool('analyze-sentiment', { text: text }); res.json({ statistics: stats, summary: summary, sentiment: sentiment }); }); ``` ### Dynamic Tool Discovery ```typescript app.get('/api/tools', async (req, res) => { const tools = await wrapper.callTool('get-available-tools', {}); res.json(tools); }); app.post('/api/tools/:toolName', async (req, res) => { const { toolName } = req.params; const result = await wrapper.callTool(toolName, req.body); res.json(result); }); ``` ## Troubleshooting ### Common Issues 1. **CORS Errors**: - Ensure CORS is properly configured - Check allowed origins and methods 2. **Authentication Failures**: - Verify API keys and tokens - Check Copilot Studio connector configuration 3. **Timeout Issues**: - Increase timeout values - Implement proper error handling - Add retry logic ### Debugging Tips 1. **Enable Detailed Logging**: ```typescript app.use((req, res, next) => { console.log(`${req.method} ${req.path}`, req.body); next(); }); ``` 2. **Test Endpoints Individually**: - Use Postman or curl - Verify MCP server responses - Check data transformation 3. **Monitor Performance**: - Track response times - Monitor error rates - Use APM tools ## Next Steps 1. **Deploy to Production**: - Use cloud platforms (Azure, AWS, GCP) - Set up CI/CD pipelines - Configure monitoring and alerts 2. **Scale Your Integration**: - Implement caching - Add load balancing - Optimize database queries 3. **Enhance Security**: - Add OAuth2/OpenID Connect - Implement role-based access - Use HTTPS everywhere 4. **Extend Functionality**: - Add more MCP tools - Create complex workflows - Build custom UI components ## Resources - [Copilot Studio Documentation](https://docs.microsoft.com/en-us/microsoft-copilot-studio/) - [Power Platform Connectors](https://docs.microsoft.com/en-us/connectors/) - [MCP Protocol Specification](https://modelcontextprotocol.io/) Happy integrating! 🚀

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sayedpfe/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server