Skip to main content
Glama
satomic

Azure AI Image Editor MCP Server

by satomic
debug_base64.py4.2 kB
#!/usr/bin/env python3 """ Debug script to test if base64 data can be properly decoded and validated """ import base64 import io from pathlib import Path try: from PIL import Image except ImportError: print("Error: PIL not installed. Install with: pip install pillow") exit(1) def test_base64_data(base64_string): """Test if base64 data is valid image data""" print("\n" + "="*60) print("Base64 Image Data Validation Test") print("="*60) # Handle Data URL format if base64_string.startswith('data:'): print("\n1️⃣ Detected Data URL format") if ',' in base64_string: mime_type = base64_string.split(',')[0] base64_data = base64_string.split(',', 1)[1] print(f" MIME type: {mime_type}") print(f" Base64 length: {len(base64_data)}") else: print("❌ Invalid Data URL format: missing comma separator") return False else: print("\n1️⃣ Raw base64 format detected") base64_data = base64_string print(f" Base64 length: {len(base64_data)}") # Try to decode print("\n2️⃣ Attempting to decode base64...") try: image_bytes = base64.b64decode(base64_data) print(f"✅ Decoded successfully") print(f" Decoded size: {len(image_bytes)} bytes") except Exception as e: print(f"❌ Failed to decode: {e}") return False # Try to open with PIL print("\n3️⃣ Attempting to open with PIL...") try: img = Image.open(io.BytesIO(image_bytes)) print(f"✅ Opened successfully") print(f" Format: {img.format}") print(f" Mode: {img.mode}") print(f" Size: {img.size}") # Try to verify print("\n4️⃣ Verifying image integrity...") img.verify() print("✅ Image verification passed") # Re-open and save print("\n5️⃣ Attempting to save as PNG...") img_for_save = Image.open(io.BytesIO(image_bytes)) output_path = Path("./test_decoded_image.png") img_for_save.save(output_path, format='PNG') print(f"✅ Saved to: {output_path.absolute()}") return True except Exception as e: print(f"❌ Failed to process image: {e}") import traceback traceback.print_exc() return False if __name__ == "__main__": import sys print("\n" + "="*60) print("Base64 Image Validation Tool") print("="*60) print("\nUsage:") print(" python tests/debug_base64.py") print("\nThis script will prompt you to paste your base64 data.") print("Supports both formats:") print(" - Raw: iVBORw0KGgoAAAANS...") print(" - Data URL: ...") print("="*60 + "\n") # Check if base64 provided as argument if len(sys.argv) > 1: base64_input = sys.argv[1] else: print("Please paste your base64 string (can be multiline, press Ctrl+D when done):") print("-" * 60) lines = [] try: while True: line = input() lines.append(line) except EOFError: pass base64_input = ''.join(lines).strip() if not base64_input: print("❌ No input provided") exit(1) print(f"\nReceived {len(base64_input)} characters of input") success = test_base64_data(base64_input) print("\n" + "="*60) if success: print("🎉 Base64 data is valid!") print("\nYour image data should work with the HTTP server.") else: print("❌ Base64 data is invalid or corrupted") print("\nPossible issues:") print(" 1. Data was not properly base64 encoded") print(" 2. Image file is corrupted at the source") print(" 3. Encoding/decoding error during transfer") print("\nSuggestions:") print(" - Try encoding the original image file again") print(" - Verify the original image opens correctly") print(" - Use a different image file") print("="*60 + "\n")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/satomic/Azure-AI-Image-Editor-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server