Skip to main content
Glama

Azure AI Image Editor MCP Server

by satomic
README.md9.35 kB
# Azure Image Editor MCP Server [中文](./README_CN.md) | **English** This is an MCP (Model Context Protocol) server that supports Azure AI Foundry image generation and editing capabilities. ## Features 1. **Text-to-Image Generation** - Generate high-quality images from text descriptions using Azure AI Foundry models 2. **Image Editing** - Edit and modify existing images 3. **Configurable Models** - Support for multiple Azure AI models via environment variables ## Demo Click 👇 to go to the demo on YouTube [![Using GitHub Copilot & Azure AI Foundry with FLUX 1 Kontext Full Walkthrough for Image Generation Demo](https://img.youtube.com/vi/bnioXb5dd3M/0.jpg)](https://www.youtube.com/watch?v=bnioXb5dd3M) ## Project Structure ``` azure-image-editor/ ├── .venv/ # Python virtual environment ├── src/ │ ├── azure_image_client.py # Azure API client │ ├── mcp_server.py # STDIO MCP server │ └── mcp_server_http.py # HTTP/JSON-RPC MCP server ├── tests/ # Test files ├── logs/ # Server logs ├── tmp/ # Temporary files ├── requirements.txt # Python dependencies ├── .env # Environment configuration ├── .env.example # Environment configuration template └── README.md # Project documentation ``` ## Prerequisites **⚠️ Important**: Before using this MCP server, you must deploy the required model in your Azure AI Foundry environment. ### Azure AI Foundry Model Deployment 1. **Access Azure AI Foundry**: Go to [Azure AI Foundry](https://ai.azure.com/) 2. **Deploy the model**: Deploy `flux.1-kontext-pro` (or your preferred model) in your Azure AI Foundry workspace 3. **Get deployment details**: Note down your: - Base URL (endpoint) - API key - Deployment name - Model name Without proper model deployment, the MCP server will not function correctly. ## Installation and Setup 1. **Clone and setup environment**: ```bash git clone https://github.com/satomic/Azure-AI-Image-Editor-MCP.git cd azure-image-editor python -m venv .venv source .venv/bin/activate # Linux/Mac # or .venv\Scripts\activate # Windows pip install -r requirements.txt ``` ## Server Modes This project supports two MCP server modes: ### 1. STDIO Mode (Default) Communicates via standard input/output. Suitable for VSCode integration. ### 2. HTTP/JSON-RPC Mode Communicates via HTTP with JSON-RPC 2.0 protocol. Suitable for web applications and remote access. ## Configuration ### Configure STDIO Mode (VSCode MCP) Add the following to your VSCode MCP configuration: ```json { "servers": { "azure-image-editor": { "command": "/full/path/to/.venv/bin/python", "args": ["/full/path/to/azure-image-editor/src/mcp_server.py"], "env": { "AZURE_BASE_URL": "https://your-endpoint.services.ai.azure.com", // deployment endpoint "AZURE_API_KEY": "${input:azure-api-key}", "AZURE_DEPLOYMENT_NAME": "FLUX.1-Kontext-pro", // The name you gave your deployment "AZURE_MODEL": "flux.1-kontext-pro", // Default model "AZURE_API_VERSION": "2025-04-01-preview" // Default API version } } }, "inputs": [ { "id": "azure-api-key", "type": "promptString", "description": "Enter your Azure API Key", "password": "true" } ] } ``` **Important**: Replace `/full/path/to/` with the actual absolute path to this project directory. ### Configure HTTP/JSON-RPC Mode #### Option 1: Run directly with environment variables ```bash # Activate virtual environment source .venv/bin/activate # Linux/Mac # or .venv\Scripts\activate # Windows # Set environment variables export AZURE_BASE_URL="https://your-endpoint.services.ai.azure.com" export AZURE_API_KEY="your-api-key" export AZURE_DEPLOYMENT_NAME="FLUX.1-Kontext-pro" export AZURE_MODEL="flux.1-kontext-pro" export AZURE_API_VERSION="2025-04-01-preview" # Optional: Configure server host and port (defaults to 127.0.0.1:8000) export MCP_SERVER_HOST="0.0.0.0" # Listen on all interfaces export MCP_SERVER_PORT="8000" # Server port # Start the HTTP server python src/mcp_server_http.py ``` #### Option 2: Use .env file Create a `.env` file in the project root: ```bash AZURE_BASE_URL=https://your-endpoint.services.ai.azure.com AZURE_API_KEY=your-api-key AZURE_DEPLOYMENT_NAME=FLUX.1-Kontext-pro AZURE_MODEL=flux.1-kontext-pro AZURE_API_VERSION=2025-04-01-preview # Optional server configuration MCP_SERVER_HOST=127.0.0.1 MCP_SERVER_PORT=8000 DEFAULT_IMAGE_SIZE=1024x1024 ``` Then start the server: ```bash source .venv/bin/activate python src/mcp_server_http.py ``` #### Server Endpoints When the HTTP server is running, the following endpoints are available: - **JSON-RPC Endpoint**: `http://127.0.0.1:8000/` - Main JSON-RPC 2.0 endpoint (POST) - **Health Check**: `http://127.0.0.1:8000/health` - Server health status (GET) #### Connecting to HTTP Server **Important for HTTP Mode**: When using HTTP mode, even if you provide an `output_path` parameter, the server will: 1. Save the image to the specified path on the server 2. **Also return** the base64-encoded image data to the client This allows the MCP client to receive the image data and save it locally without needing additional file transfer. **Using VSCode MCP Client:** ```json { "servers": { "azure-image-editor-http": { "type": "http", "url": "http://127.0.0.1:8000" } } } ``` **Using curl:** ```bash # List available tools curl -X POST http://127.0.0.1:8000/ \ -H "Content-Type: application/json" \ -d '{"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}}' # Call generate_image tool curl -X POST http://127.0.0.1:8000/ \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": { "name": "generate_image", "arguments": { "prompt": "A beautiful sunset over mountains", "size": "1024x1024", "output_path": "./images/sunset.png" } } }' ``` ## Available MCP Tools #### 1. generate_image Generate images from text prompts **Parameters**: - `prompt` (required): English text description for image generation - `size` (optional): Image size - "1024x1024", "1792x1024", "1024x1792", default: "1024x1024" - `output_path` (optional): Output file path, returns base64 encoded image if not provided **Example**: ```json { "name": "generate_image", "arguments": { "prompt": "A beautiful sunset over mountains", "size": "1024x1024", "output_path": "/path/to/output/image.png" } } ``` #### 2. edit_image Edit existing images with intelligent dimension preservation **Parameters**: **STDIO mode**: - `image_path` (required): Path to the image file to edit - `prompt` (required): English text description of how to edit the image - `size` (optional): Output image size, uses original dimensions if not specified - `output_path` (optional): Output file path **HTTP mode**: - `image_data_base64` (required): Base64 encoded image data - Supports raw base64 format: `iVBORw0KGgoAAAANS...` - Supports Data URL format: `...` - `prompt` (required): English text description of how to edit the image - `size` (optional): Output image size, uses original dimensions if not specified - `output_path` (optional): Output file path (server-side), image data always returned to client **Example (STDIO mode)**: ```json { "name": "edit_image", "arguments": { "image_path": "/path/to/input/image.png", "prompt": "Make this black and white", "output_path": "/path/to/output/edited_image.png" } } ``` **Example (HTTP mode)**: ```json { "name": "edit_image", "arguments": { "image_data_base64": "iVBORw0KGgoAAAANS...", "prompt": "Make this black and white", "output_path": "/tmp/edited_image.png" } } ``` Or using Data URL format: ```json { "name": "edit_image", "arguments": { "image_data_base64": "...", "prompt": "Make this black and white", "output_path": "/tmp/edited_image.png" } } ``` ## Technical Specifications - **Python version**: 3.8+ - **Main dependencies**: - `mcp`: MCP protocol support - `httpx`: HTTP client with timeout handling - `pillow`: Image processing and dimension detection - `aiofiles`: Async file operations - `pydantic`: Data validation - `python-dotenv`: Environment variable management - `starlette`: ASGI framework for HTTP server (HTTP mode only) - `uvicorn`: ASGI server (HTTP mode only) - **Azure AI Foundry**: - Default model: flux.1-kontext-pro (configurable) - Default API version: 2025-04-01-preview (configurable) - Supported image sizes: 1024x1024, 1792x1024, 1024x1792 - Timeout: 5 minutes per request ## Troubleshooting 1. **Timeout Errors**: Image processing has 5-minute timeout, check network connectivity 2. **API Errors**: Verify Azure credentials and endpoint URL 3. **Dependency Issues**: Ensure virtual environment is activated and dependencies installed 4. **Server Connection Issues**: Verify VSCode MCP configuration path is correct ## License MIT License

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/satomic/Azure-AI-Image-Editor-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server