README.md•9.35 kB
# Azure Image Editor MCP Server
[中文](./README_CN.md) | **English**
This is an MCP (Model Context Protocol) server that supports Azure AI Foundry image generation and editing capabilities.
## Features
1. **Text-to-Image Generation** - Generate high-quality images from text descriptions using Azure AI Foundry models
2. **Image Editing** - Edit and modify existing images
3. **Configurable Models** - Support for multiple Azure AI models via environment variables
## Demo
Click 👇 to go to the demo on YouTube
[](https://www.youtube.com/watch?v=bnioXb5dd3M)
## Project Structure
```
azure-image-editor/
├── .venv/ # Python virtual environment
├── src/
│ ├── azure_image_client.py # Azure API client
│ ├── mcp_server.py # STDIO MCP server
│ └── mcp_server_http.py # HTTP/JSON-RPC MCP server
├── tests/ # Test files
├── logs/ # Server logs
├── tmp/ # Temporary files
├── requirements.txt # Python dependencies
├── .env # Environment configuration
├── .env.example # Environment configuration template
└── README.md # Project documentation
```
## Prerequisites
**⚠️ Important**: Before using this MCP server, you must deploy the required model in your Azure AI Foundry environment.
### Azure AI Foundry Model Deployment
1. **Access Azure AI Foundry**: Go to [Azure AI Foundry](https://ai.azure.com/)
2. **Deploy the model**: Deploy `flux.1-kontext-pro` (or your preferred model) in your Azure AI Foundry workspace
3. **Get deployment details**: Note down your:
- Base URL (endpoint)
- API key
- Deployment name
- Model name
Without proper model deployment, the MCP server will not function correctly.
## Installation and Setup
1. **Clone and setup environment**:
```bash
git clone https://github.com/satomic/Azure-AI-Image-Editor-MCP.git
cd azure-image-editor
python -m venv .venv
source .venv/bin/activate # Linux/Mac
# or .venv\Scripts\activate # Windows
pip install -r requirements.txt
```
## Server Modes
This project supports two MCP server modes:
### 1. STDIO Mode (Default)
Communicates via standard input/output. Suitable for VSCode integration.
### 2. HTTP/JSON-RPC Mode
Communicates via HTTP with JSON-RPC 2.0 protocol. Suitable for web applications and remote access.
## Configuration
### Configure STDIO Mode (VSCode MCP)
Add the following to your VSCode MCP configuration:
```json
{
"servers": {
"azure-image-editor": {
"command": "/full/path/to/.venv/bin/python",
"args": ["/full/path/to/azure-image-editor/src/mcp_server.py"],
"env": {
"AZURE_BASE_URL": "https://your-endpoint.services.ai.azure.com", // deployment endpoint
"AZURE_API_KEY": "${input:azure-api-key}",
"AZURE_DEPLOYMENT_NAME": "FLUX.1-Kontext-pro", // The name you gave your deployment
"AZURE_MODEL": "flux.1-kontext-pro", // Default model
"AZURE_API_VERSION": "2025-04-01-preview" // Default API version
}
}
},
"inputs": [
{
"id": "azure-api-key",
"type": "promptString",
"description": "Enter your Azure API Key",
"password": "true"
}
]
}
```
**Important**: Replace `/full/path/to/` with the actual absolute path to this project directory.
### Configure HTTP/JSON-RPC Mode
#### Option 1: Run directly with environment variables
```bash
# Activate virtual environment
source .venv/bin/activate # Linux/Mac
# or .venv\Scripts\activate # Windows
# Set environment variables
export AZURE_BASE_URL="https://your-endpoint.services.ai.azure.com"
export AZURE_API_KEY="your-api-key"
export AZURE_DEPLOYMENT_NAME="FLUX.1-Kontext-pro"
export AZURE_MODEL="flux.1-kontext-pro"
export AZURE_API_VERSION="2025-04-01-preview"
# Optional: Configure server host and port (defaults to 127.0.0.1:8000)
export MCP_SERVER_HOST="0.0.0.0" # Listen on all interfaces
export MCP_SERVER_PORT="8000" # Server port
# Start the HTTP server
python src/mcp_server_http.py
```
#### Option 2: Use .env file
Create a `.env` file in the project root:
```bash
AZURE_BASE_URL=https://your-endpoint.services.ai.azure.com
AZURE_API_KEY=your-api-key
AZURE_DEPLOYMENT_NAME=FLUX.1-Kontext-pro
AZURE_MODEL=flux.1-kontext-pro
AZURE_API_VERSION=2025-04-01-preview
# Optional server configuration
MCP_SERVER_HOST=127.0.0.1
MCP_SERVER_PORT=8000
DEFAULT_IMAGE_SIZE=1024x1024
```
Then start the server:
```bash
source .venv/bin/activate
python src/mcp_server_http.py
```
#### Server Endpoints
When the HTTP server is running, the following endpoints are available:
- **JSON-RPC Endpoint**: `http://127.0.0.1:8000/` - Main JSON-RPC 2.0 endpoint (POST)
- **Health Check**: `http://127.0.0.1:8000/health` - Server health status (GET)
#### Connecting to HTTP Server
**Important for HTTP Mode**: When using HTTP mode, even if you provide an `output_path` parameter, the server will:
1. Save the image to the specified path on the server
2. **Also return** the base64-encoded image data to the client
This allows the MCP client to receive the image data and save it locally without needing additional file transfer.
**Using VSCode MCP Client:**
```json
{
"servers": {
"azure-image-editor-http": {
"type": "http",
"url": "http://127.0.0.1:8000"
}
}
}
```
**Using curl:**
```bash
# List available tools
curl -X POST http://127.0.0.1:8000/ \
-H "Content-Type: application/json" \
-d '{"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}}'
# Call generate_image tool
curl -X POST http://127.0.0.1:8000/ \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "generate_image",
"arguments": {
"prompt": "A beautiful sunset over mountains",
"size": "1024x1024",
"output_path": "./images/sunset.png"
}
}
}'
```
## Available MCP Tools
#### 1. generate_image
Generate images from text prompts
**Parameters**:
- `prompt` (required): English text description for image generation
- `size` (optional): Image size - "1024x1024", "1792x1024", "1024x1792", default: "1024x1024"
- `output_path` (optional): Output file path, returns base64 encoded image if not provided
**Example**:
```json
{
"name": "generate_image",
"arguments": {
"prompt": "A beautiful sunset over mountains",
"size": "1024x1024",
"output_path": "/path/to/output/image.png"
}
}
```
#### 2. edit_image
Edit existing images with intelligent dimension preservation
**Parameters**:
**STDIO mode**:
- `image_path` (required): Path to the image file to edit
- `prompt` (required): English text description of how to edit the image
- `size` (optional): Output image size, uses original dimensions if not specified
- `output_path` (optional): Output file path
**HTTP mode**:
- `image_data_base64` (required): Base64 encoded image data
- Supports raw base64 format: `iVBORw0KGgoAAAANS...`
- Supports Data URL format: `...`
- `prompt` (required): English text description of how to edit the image
- `size` (optional): Output image size, uses original dimensions if not specified
- `output_path` (optional): Output file path (server-side), image data always returned to client
**Example (STDIO mode)**:
```json
{
"name": "edit_image",
"arguments": {
"image_path": "/path/to/input/image.png",
"prompt": "Make this black and white",
"output_path": "/path/to/output/edited_image.png"
}
}
```
**Example (HTTP mode)**:
```json
{
"name": "edit_image",
"arguments": {
"image_data_base64": "iVBORw0KGgoAAAANS...",
"prompt": "Make this black and white",
"output_path": "/tmp/edited_image.png"
}
}
```
Or using Data URL format:
```json
{
"name": "edit_image",
"arguments": {
"image_data_base64": "...",
"prompt": "Make this black and white",
"output_path": "/tmp/edited_image.png"
}
}
```
## Technical Specifications
- **Python version**: 3.8+
- **Main dependencies**:
- `mcp`: MCP protocol support
- `httpx`: HTTP client with timeout handling
- `pillow`: Image processing and dimension detection
- `aiofiles`: Async file operations
- `pydantic`: Data validation
- `python-dotenv`: Environment variable management
- `starlette`: ASGI framework for HTTP server (HTTP mode only)
- `uvicorn`: ASGI server (HTTP mode only)
- **Azure AI Foundry**:
- Default model: flux.1-kontext-pro (configurable)
- Default API version: 2025-04-01-preview (configurable)
- Supported image sizes: 1024x1024, 1792x1024, 1024x1792
- Timeout: 5 minutes per request
## Troubleshooting
1. **Timeout Errors**: Image processing has 5-minute timeout, check network connectivity
2. **API Errors**: Verify Azure credentials and endpoint URL
3. **Dependency Issues**: Ensure virtual environment is activated and dependencies installed
4. **Server Connection Issues**: Verify VSCode MCP configuration path is correct
## License
MIT License