Skip to main content
Glama

analyze_pattern

Identify and learn from interaction patterns to enhance system performance. Provide predictive insights and improve tool usage efficiency by analyzing data inputs and outcomes.

Instructions

Analyze and learn from interaction patterns

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
interactionYes

Implementation Reference

  • Core handler in LearningEngine that performs pattern analysis, feature extraction, pattern updating, learning cycle triggering, and persistence for the analyze_pattern tool logic
    async analyzePattern(interaction) { const pattern = { id: crypto.randomUUID(), timestamp: new Date().toISOString(), type: interaction.type, input: interaction.input, output: interaction.output, context: interaction.context, performance: interaction.performance, success: interaction.success }; // Store in memory buffer this.memoryBuffer.push(pattern); if (this.memoryBuffer.length > this.maxMemorySize) { await this.consolidateMemory(); } // Extract features const features = this.extractFeatures(pattern); // Update pattern recognition await this.updatePatterns(features); // Trigger learning if threshold met if (this.shouldTriggerLearning()) { await this.performLearningCycle(); } // Auto-save if interval elapsed if (this.shouldAutoSave()) { await this.saveToFile(); } this.emit('pattern-analyzed', pattern); return pattern;
  • MCP server tool handler for 'analyze_pattern' that extracts interaction, calls LearningEngine.analyzePattern, and returns results with features and recommendations
    async handleAnalyzePattern(args) { const { interaction } = args; const pattern = await this.learningEngine.analyzePattern(interaction); return { success: true, patternId: pattern.id, features: this.learningEngine.extractFeatures(pattern), recommendations: this.learningEngine.generateRecommendations({ features: this.learningEngine.extractFeatures(pattern), confidence: 0.5 }) };
  • Registration/dispatch in CallToolRequestSchema handler that routes 'analyze_pattern' calls to handleAnalyzePattern
    switch (name) { case 'analyze_pattern': result = await this.handleAnalyzePattern(args);
  • Tool registration in ListToolsRequestSchema including name, description, and input schema
    name: 'analyze_pattern', description: 'Analyze and learn from interaction patterns', inputSchema: { type: 'object', properties: { interaction: { type: 'object', properties: { type: { type: 'string' }, input: { type: 'string' }, output: { type: 'string' }, context: { type: 'object' }, performance: { type: 'object' }, success: { type: 'boolean' } }, required: ['type', 'input', 'output'] } }, required: ['interaction'] }
  • Key helper method called by analyzePattern to extract features like tool sequence, context, performance, embedding, and temporal patterns
    extractFeatures(pattern) { return { toolSequence: this.identifyToolSequence(pattern), contextualCues: this.extractContextualCues(pattern), performanceMetrics: this.calculatePerformanceMetrics(pattern), semanticEmbedding: this.generateSemanticEmbedding(pattern), temporalPatterns: this.identifyTemporalPatterns(pattern) }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/saralegui-solutions/mcp-self-learning-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server