Skip to main content
Glama
ingest_faq.py468 B
from rag_code import EmbedData, QdrantVDB, new_faq_text # Etapa 1: gerar embeddings dos textos do FAQ embedder = EmbedData() embedder.embed(contexts=new_faq_text) # Etapa 2: conectar ao Qdrant e criar a coleção (se necessário) vector_db = QdrantVDB("ml_faq_collection") vector_db.create_collection() # Etapa 3: inserir os vetores no Qdrant vector_db.ingest_data(embedder) print("✅ Coleção 'ml_faq_collection' populada com sucesso no Qdrant.")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sandovalmedeiros/mcp_agentic_rag'

If you have feedback or need assistance with the MCP directory API, please join our Discord server