Skip to main content
Glama

Charts Visualization MCP Server

by sakshi1x
client.py1.63 kB
import asyncio from mcp import ClientSession from mcp.client.streamable_http import streamablehttp_client async def run(): # Connect to the MCP server using Streamable HTTP async with streamablehttp_client("http://localhost:8000/mcp") as (read, write, _): async with ClientSession(read, write) as session: await session.initialize() # List available tools tools = await session.list_tools() print(f"Available tools: {[t.name for t in tools.tools]}") # Call bar chart tool bar_result = await session.call_tool( "create_bar_chart_tool", arguments={ "data": [ {"label": "A", "value": 10}, {"label": "B", "value": 20}, {"label": "C", "value": 30} ], "color": "set2" } ) print(f"Bar Chart Result: {bar_result.structuredContent}") # Call pie chart tool pie_result = await session.call_tool( "create_pie_chart_tool", arguments={ "data": [ {"label": "A", "value": 10}, {"label": "B", "value": 20}, {"label": "C", "value": 30} ], "color": "set2" } ) print(f"Pie Chart Result: {pie_result.structuredContent}") def main(): asyncio.run(run()) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sakshi1x/mcp_visualization'

If you have feedback or need assistance with the MCP directory API, please join our Discord server