Skip to main content
Glama

MCP Complete Implementation Guide

by saksham0712
README.md•7.48 kB
# Model Context Protocol (MCP) - Complete Implementation Guide ## šŸš€ Overview Model Context Protocol (MCP) is an open standard that enables seamless integration between AI applications and external data sources and tools. This guide provides a complete end-to-end implementation with all necessary configuration files and integration examples for ChatGPT, Claude, and other AI models. ## šŸ“‹ Table of Contents - [What is MCP?](#what-is-mcp) - [Benefits](#benefits) - [Prerequisites](#prerequisites) - [Quick Start](#quick-start) - [Server Implementation](#server-implementation) - [AI Model Integration](#ai-model-integration) - [Configuration Files](#configuration-files) - [Local Development](#local-development) - [Deployment](#deployment) - [Troubleshooting](#troubleshooting) - [Advanced Features](#advanced-features) ## šŸ¤” What is MCP? MCP (Model Context Protocol) is a standardized way to: - Connect AI models to external data sources - Provide tools and functions that AI models can use - Enable secure and controlled access to resources - Create reusable components across different AI applications ### Key Components: - **MCP Server**: Provides tools, resources, and prompts - **MCP Client**: AI applications that consume MCP services - **Transport Layer**: Communication protocol (stdio, HTTP, WebSocket) ## ✨ Benefits - **Standardized Integration**: Universal protocol for AI model connections - **Security**: Controlled access to external resources - **Reusability**: One MCP server can serve multiple AI applications - **Extensibility**: Easy to add new tools and resources - **Local Development**: Run everything locally for privacy and control ## šŸ”§ Prerequisites ### Required Software: - **Node.js** (v18 or later) or **Python** (3.8+) - **Git** - **PowerShell** (Windows) - **VS Code** (recommended) ### For AI Model Integration: - API keys for your chosen AI models - Claude Desktop, ChatGPT Desktop, or compatible client ## šŸš€ Quick Start ### 1. Clone and Setup ```powershell # Create project directory mkdir mcp-implementation cd mcp-implementation # Initialize the project git init npm init -y # or use Python if preferred ``` ### 2. Install Dependencies ```powershell # For Node.js implementation npm install @modelcontextprotocol/sdk express cors dotenv # For Python implementation (alternative) pip install mcp python-dotenv fastapi uvicorn ``` ### 3. Run the Example Server ```powershell # Start the MCP server node server.js # Or for Python python server.py ``` ### 4. Configure Your AI Client Update your AI client configuration (examples provided below for each platform). ## šŸ› ļø Server Implementation ### Node.js MCP Server Our MCP server will provide: - File system tools - Web scraping capabilities - System information - Custom business logic See `server.js` for the complete implementation. ### Python MCP Server (Alternative) For Python developers, we also provide a Python implementation in `server.py`. ## šŸ¤– AI Model Integration ### Claude Desktop Integration Claude Desktop has native MCP support. Configuration is done through `claude_desktop_config.json`. ### ChatGPT Integration Integration through custom plugins or API wrapper. See `chatgpt-integration/` directory. ### Other AI Models Generic HTTP client implementation for any AI model that supports external tool calling. ## āš™ļø Configuration Files This repository includes configuration files for: - `claude_desktop_config.json` - Claude Desktop MCP configuration - `chatgpt-config.json` - ChatGPT plugin configuration - `mcp-config.json` - Generic MCP server configuration - `.env` - Environment variables and API keys - `package.json` - Node.js dependencies and scripts ## šŸ  Local Development ### Development Scripts We provide PowerShell scripts for easy development: - `scripts/setup.ps1` - Initial setup and dependency installation - `scripts/start-dev.ps1` - Start development server with hot reload - `scripts/test.ps1` - Run tests and validation ### Environment Setup 1. Copy `.env.example` to `.env` 2. Fill in your API keys and configuration 3. Run the setup script ```powershell .\scripts\setup.ps1 ``` ## šŸš€ Deployment ### Local Deployment ```powershell # Production build npm run build # Start production server npm start ``` ### Docker Deployment ```powershell # Build Docker image docker build -t mcp-server . # Run container docker run -p 3000:3000 --env-file .env mcp-server ``` ### Cloud Deployment Instructions for deploying to: - Heroku - AWS Lambda - Google Cloud Functions - Azure Functions ## šŸ”§ Troubleshooting ### Common Issues 1. **Connection Refused**: Check if MCP server is running 2. **Authentication Errors**: Verify API keys in `.env` 3. **Tool Not Found**: Ensure tools are properly registered 4. **CORS Issues**: Check CORS configuration in server ### Debugging ```powershell # Enable debug logging $env:DEBUG = "mcp:*" node server.js ``` ### Health Check ```powershell # Test server health curl http://localhost:3000/health ``` ## šŸš€ Advanced Features ### Custom Tools Learn how to create custom tools for your specific use case. ### Resource Management Implement resource caching and management for better performance. ### Security Best practices for securing your MCP server and API keys. ### Monitoring Set up logging and monitoring for production deployments. ## šŸ“ Project Structure ``` mcp-implementation/ ā”œā”€ā”€ README.md # This file ā”œā”€ā”€ server.js # Main MCP server (Node.js) ā”œā”€ā”€ server.py # Alternative Python server ā”œā”€ā”€ package.json # Node.js dependencies ā”œā”€ā”€ requirements.txt # Python dependencies ā”œā”€ā”€ .env.example # Environment variables template ā”œā”€ā”€ claude_desktop_config.json # Claude Desktop configuration ā”œā”€ā”€ chatgpt-config.json # ChatGPT integration config ā”œā”€ā”€ mcp-config.json # Generic MCP configuration ā”œā”€ā”€ Dockerfile # Docker container configuration ā”œā”€ā”€ scripts/ │ ā”œā”€ā”€ setup.ps1 # Setup script for Windows │ ā”œā”€ā”€ start-dev.ps1 # Development server script │ └── test.ps1 # Testing script ā”œā”€ā”€ examples/ │ ā”œā”€ā”€ claude-integration/ # Claude-specific examples │ ā”œā”€ā”€ chatgpt-integration/ # ChatGPT integration examples │ └── generic-client/ # Generic client examples ā”œā”€ā”€ tools/ │ ā”œā”€ā”€ filesystem.js # File system tools │ ā”œā”€ā”€ web-scraper.js # Web scraping tools │ └── system-info.js # System information tools └── tests/ ā”œā”€ā”€ server.test.js # Server tests └── integration.test.js # Integration tests ``` ## šŸ“š Next Steps 1. Follow the [Quick Start](#quick-start) guide 2. Explore the example implementations 3. Configure your preferred AI model 4. Customize tools for your use case 5. Deploy to your preferred platform ## šŸ¤ Contributing Contributions are welcome! Please read our contributing guidelines and submit pull requests for any improvements. ## šŸ“„ License This project is licensed under the MIT License - see the LICENSE file for details. ## šŸ†˜ Support If you encounter any issues: 1. Check the [Troubleshooting](#troubleshooting) section 2. Search existing GitHub issues 3. Create a new issue with detailed information --- *Happy coding with MCP! šŸš€*

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/saksham0712/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server