README.mdā¢7.48 kB
# Model Context Protocol (MCP) - Complete Implementation Guide
## š Overview
Model Context Protocol (MCP) is an open standard that enables seamless integration between AI applications and external data sources and tools. This guide provides a complete end-to-end implementation with all necessary configuration files and integration examples for ChatGPT, Claude, and other AI models.
## š Table of Contents
- [What is MCP?](#what-is-mcp)
- [Benefits](#benefits)
- [Prerequisites](#prerequisites)
- [Quick Start](#quick-start)
- [Server Implementation](#server-implementation)
- [AI Model Integration](#ai-model-integration)
- [Configuration Files](#configuration-files)
- [Local Development](#local-development)
- [Deployment](#deployment)
- [Troubleshooting](#troubleshooting)
- [Advanced Features](#advanced-features)
## š¤ What is MCP?
MCP (Model Context Protocol) is a standardized way to:
- Connect AI models to external data sources
- Provide tools and functions that AI models can use
- Enable secure and controlled access to resources
- Create reusable components across different AI applications
### Key Components:
- **MCP Server**: Provides tools, resources, and prompts
- **MCP Client**: AI applications that consume MCP services
- **Transport Layer**: Communication protocol (stdio, HTTP, WebSocket)
## ⨠Benefits
- **Standardized Integration**: Universal protocol for AI model connections
- **Security**: Controlled access to external resources
- **Reusability**: One MCP server can serve multiple AI applications
- **Extensibility**: Easy to add new tools and resources
- **Local Development**: Run everything locally for privacy and control
## š§ Prerequisites
### Required Software:
- **Node.js** (v18 or later) or **Python** (3.8+)
- **Git**
- **PowerShell** (Windows)
- **VS Code** (recommended)
### For AI Model Integration:
- API keys for your chosen AI models
- Claude Desktop, ChatGPT Desktop, or compatible client
## š Quick Start
### 1. Clone and Setup
```powershell
# Create project directory
mkdir mcp-implementation
cd mcp-implementation
# Initialize the project
git init
npm init -y # or use Python if preferred
```
### 2. Install Dependencies
```powershell
# For Node.js implementation
npm install @modelcontextprotocol/sdk express cors dotenv
# For Python implementation (alternative)
pip install mcp python-dotenv fastapi uvicorn
```
### 3. Run the Example Server
```powershell
# Start the MCP server
node server.js
# Or for Python
python server.py
```
### 4. Configure Your AI Client
Update your AI client configuration (examples provided below for each platform).
## š ļø Server Implementation
### Node.js MCP Server
Our MCP server will provide:
- File system tools
- Web scraping capabilities
- System information
- Custom business logic
See `server.js` for the complete implementation.
### Python MCP Server (Alternative)
For Python developers, we also provide a Python implementation in `server.py`.
## š¤ AI Model Integration
### Claude Desktop Integration
Claude Desktop has native MCP support. Configuration is done through `claude_desktop_config.json`.
### ChatGPT Integration
Integration through custom plugins or API wrapper. See `chatgpt-integration/` directory.
### Other AI Models
Generic HTTP client implementation for any AI model that supports external tool calling.
## āļø Configuration Files
This repository includes configuration files for:
- `claude_desktop_config.json` - Claude Desktop MCP configuration
- `chatgpt-config.json` - ChatGPT plugin configuration
- `mcp-config.json` - Generic MCP server configuration
- `.env` - Environment variables and API keys
- `package.json` - Node.js dependencies and scripts
## š Local Development
### Development Scripts
We provide PowerShell scripts for easy development:
- `scripts/setup.ps1` - Initial setup and dependency installation
- `scripts/start-dev.ps1` - Start development server with hot reload
- `scripts/test.ps1` - Run tests and validation
### Environment Setup
1. Copy `.env.example` to `.env`
2. Fill in your API keys and configuration
3. Run the setup script
```powershell
.\scripts\setup.ps1
```
## š Deployment
### Local Deployment
```powershell
# Production build
npm run build
# Start production server
npm start
```
### Docker Deployment
```powershell
# Build Docker image
docker build -t mcp-server .
# Run container
docker run -p 3000:3000 --env-file .env mcp-server
```
### Cloud Deployment
Instructions for deploying to:
- Heroku
- AWS Lambda
- Google Cloud Functions
- Azure Functions
## š§ Troubleshooting
### Common Issues
1. **Connection Refused**: Check if MCP server is running
2. **Authentication Errors**: Verify API keys in `.env`
3. **Tool Not Found**: Ensure tools are properly registered
4. **CORS Issues**: Check CORS configuration in server
### Debugging
```powershell
# Enable debug logging
$env:DEBUG = "mcp:*"
node server.js
```
### Health Check
```powershell
# Test server health
curl http://localhost:3000/health
```
## š Advanced Features
### Custom Tools
Learn how to create custom tools for your specific use case.
### Resource Management
Implement resource caching and management for better performance.
### Security
Best practices for securing your MCP server and API keys.
### Monitoring
Set up logging and monitoring for production deployments.
## š Project Structure
```
mcp-implementation/
āāā README.md # This file
āāā server.js # Main MCP server (Node.js)
āāā server.py # Alternative Python server
āāā package.json # Node.js dependencies
āāā requirements.txt # Python dependencies
āāā .env.example # Environment variables template
āāā claude_desktop_config.json # Claude Desktop configuration
āāā chatgpt-config.json # ChatGPT integration config
āāā mcp-config.json # Generic MCP configuration
āāā Dockerfile # Docker container configuration
āāā scripts/
ā āāā setup.ps1 # Setup script for Windows
ā āāā start-dev.ps1 # Development server script
ā āāā test.ps1 # Testing script
āāā examples/
ā āāā claude-integration/ # Claude-specific examples
ā āāā chatgpt-integration/ # ChatGPT integration examples
ā āāā generic-client/ # Generic client examples
āāā tools/
ā āāā filesystem.js # File system tools
ā āāā web-scraper.js # Web scraping tools
ā āāā system-info.js # System information tools
āāā tests/
āāā server.test.js # Server tests
āāā integration.test.js # Integration tests
```
## š Next Steps
1. Follow the [Quick Start](#quick-start) guide
2. Explore the example implementations
3. Configure your preferred AI model
4. Customize tools for your use case
5. Deploy to your preferred platform
## š¤ Contributing
Contributions are welcome! Please read our contributing guidelines and submit pull requests for any improvements.
## š License
This project is licensed under the MIT License - see the LICENSE file for details.
## š Support
If you encounter any issues:
1. Check the [Troubleshooting](#troubleshooting) section
2. Search existing GitHub issues
3. Create a new issue with detailed information
---
*Happy coding with MCP! š*