Skip to main content
Glama

search_emsal_detailed_decisions

Search Turkish legal precedent decisions using detailed filters such as keywords, case and decision numbers, dates, courts, and sorting options for precise legal research.

Instructions

Search Emsal precedent decisions with detailed criteria

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
case_end_seq_esasNoEnding sequence for 'Esas No'.
case_start_seq_esasNoStarting sequence for 'Esas No'.
case_year_esasNoCase year for 'Esas No'.
decision_end_seq_kararNoEnding sequence for 'Karar No'.
decision_start_seq_kararNoStarting sequence for 'Karar No'.
decision_year_kararNoDecision year for 'Karar No'.
end_dateNoEnd date for decision (DD.MM.YYYY).
keywordNoKeyword to search.
page_numberNoPage number (accepts int).
selected_bam_civil_courtNoSelected BAM Civil Court.
selected_civil_courtNoSelected Civil Court.
selected_regional_civil_chambersNoSelected Regional Civil Chambers.
sort_criteriaNoSorting criteria (e.g., 1: Esas No).1
sort_directionNoSorting direction ('asc' or 'desc').desc
start_dateNoStart date for decision (DD.MM.YYYY).

Implementation Reference

  • The primary handler function decorated with @app.tool for the 'search_emsal_detailed_decisions' MCP tool. It accepts detailed search parameters, constructs an EmsalSearchRequest Pydantic model, invokes the EmsalApiClient's search_detailed_decisions method, processes the response into a CompactEmsalSearchResult, and serializes it to a dictionary for the MCP protocol response.
    @app.tool( description="Search Emsal precedent decisions with detailed criteria", annotations={ "readOnlyHint": True, "openWorldHint": True, "idempotentHint": True } ) async def search_emsal_detailed_decisions( keyword: str = Field("", description="Keyword to search."), selected_bam_civil_court: str = Field("", description="Selected BAM Civil Court."), selected_civil_court: str = Field("", description="Selected Civil Court."), selected_regional_civil_chambers: List[str] = Field(default_factory=list, description="Selected Regional Civil Chambers."), case_year_esas: str = Field("", description="Case year for 'Esas No'."), case_start_seq_esas: str = Field("", description="Starting sequence for 'Esas No'."), case_end_seq_esas: str = Field("", description="Ending sequence for 'Esas No'."), decision_year_karar: str = Field("", description="Decision year for 'Karar No'."), decision_start_seq_karar: str = Field("", description="Starting sequence for 'Karar No'."), decision_end_seq_karar: str = Field("", description="Ending sequence for 'Karar No'."), start_date: str = Field("", description="Start date for decision (DD.MM.YYYY)."), end_date: str = Field("", description="End date for decision (DD.MM.YYYY)."), sort_criteria: str = Field("1", description="Sorting criteria (e.g., 1: Esas No)."), sort_direction: str = Field("desc", description="Sorting direction ('asc' or 'desc')."), page_number: int = Field(1, ge=1, description="Page number (accepts int)."), # page_size: int = Field(10, ge=1, le=10, description="Results per page.") ) -> Dict[str, Any]: """Search Emsal precedent decisions with detailed criteria.""" page_size = 10 # Default value search_query = EmsalSearchRequest( keyword=keyword, selected_bam_civil_court=selected_bam_civil_court, selected_civil_court=selected_civil_court, selected_regional_civil_chambers=selected_regional_civil_chambers, case_year_esas=case_year_esas, case_start_seq_esas=case_start_seq_esas, case_end_seq_esas=case_end_seq_esas, decision_year_karar=decision_year_karar, decision_start_seq_karar=decision_start_seq_karar, decision_end_seq_karar=decision_end_seq_karar, start_date=start_date, end_date=end_date, sort_criteria=sort_criteria, sort_direction=sort_direction, page_number=page_number, page_size=page_size ) logger.info(f"Tool 'search_emsal_detailed_decisions' called.") try: api_response = await emsal_client_instance.search_detailed_decisions(search_query) if api_response.data: return CompactEmsalSearchResult( decisions=api_response.data.data, total_records=api_response.data.recordsTotal if api_response.data.recordsTotal is not None else 0, requested_page=search_query.page_number, page_size=search_query.page_size ).model_dump() logger.warning("API response for Emsal search did not contain expected data structure.") return CompactEmsalSearchResult(decisions=[], total_records=0, requested_page=search_query.page_number, page_size=search_query.page_size).model_dump() except Exception as e: logger.exception(f"Error in tool 'search_emsal_detailed_decisions'.") raise
  • Pydantic BaseModel defining the input schema for the search_emsal_detailed_decisions tool, with user-friendly field names and descriptions matching the tool parameters. Used directly in the handler to instantiate the search query.
    class EmsalSearchRequest(BaseModel): # This is the model the MCP tool will accept """Model for Emsal detailed search request, with user-friendly field names.""" keyword: str = Field("", description="Keyword") selected_bam_civil_court: str = Field("", description="BAM Civil Court") selected_civil_court: str = Field("", description="Civil Court") selected_regional_civil_chambers: List[str] = Field(default_factory=list, description="Regional chambers") case_year_esas: str = Field("", description="Case year") case_start_seq_esas: str = Field("", description="Start case no") case_end_seq_esas: str = Field("", description="End case no") decision_year_karar: str = Field("", description="Decision year") decision_start_seq_karar: str = Field("", description="Start decision no") decision_end_seq_karar: str = Field("", description="End decision no") start_date: str = Field("", description="Start date (DD.MM.YYYY)") end_date: str = Field("", description="End date (DD.MM.YYYY)") sort_criteria: str = Field("1", description="Sort by") sort_direction: str = Field("desc", description="Direction") page_number: int = Field(default=1, ge=1) page_size: int = Field(default=10, ge=1, le=10)
  • Core helper method in EmsalApiClient class that transforms EmsalSearchRequest into API-specific EmsalDetailedSearchRequestData payload (using field aliases matching the Emsal API), cleans empty fields, sends POST request to /aramadetaylist endpoint via _execute_api_search, parses EmsalApiResponse, and appends document URLs to results.
    async def search_detailed_decisions( self, params: EmsalSearchRequest ) -> EmsalApiResponse: """Performs a detailed search for Emsal decisions.""" data_for_api_payload = EmsalDetailedSearchRequestData( arananKelime=params.keyword or "", Bam_Hukuk_Mahkemeleri=params.selected_bam_civil_court, # Uses alias "Bam Hukuk Mahkemeleri" Hukuk_Mahkemeleri=params.selected_civil_court, # Uses alias "Hukuk Mahkemeleri" birimHukukMah="+".join(params.selected_regional_civil_chambers) if params.selected_regional_civil_chambers else "", esasYil=params.case_year_esas or "", esasIlkSiraNo=params.case_start_seq_esas or "", esasSonSiraNo=params.case_end_seq_esas or "", kararYil=params.decision_year_karar or "", kararIlkSiraNo=params.decision_start_seq_karar or "", kararSonSiraNo=params.decision_end_seq_karar or "", baslangicTarihi=params.start_date or "", bitisTarihi=params.end_date or "", siralama=params.sort_criteria, siralamaDirection=params.sort_direction, pageSize=params.page_size, pageNumber=params.page_number ) # Create request dict and remove empty string fields to avoid API issues payload_dict = data_for_api_payload.model_dump(by_alias=True, exclude_none=True) # Remove empty string fields that might cause API issues cleaned_payload = {k: v for k, v in payload_dict.items() if v != ""} final_payload = {"data": cleaned_payload} logger.info(f"EmsalApiClient: Performing DETAILED search with payload: {final_payload}") return await self._execute_api_search(self.DETAILED_SEARCH_ENDPOINT, final_payload)
  • Pydantic model for the compact output schema returned by the tool handler after processing the API response.
    class CompactEmsalSearchResult(BaseModel): """A compact search result model for the MCP tool to return.""" decisions: List[EmsalApiDecisionEntry] total_records: int requested_page: int page_size: int
  • Supporting private helper method that performs the actual HTTP POST to the Emsal search endpoint, parses and validates the JSON response into EmsalApiResponse model, and dynamically adds document_url to each decision entry.
    async def _execute_api_search(self, endpoint: str, payload: Dict) -> EmsalApiResponse: """Helper method to execute search POST request and process response for Emsal.""" try: response = await self.http_client.post(endpoint, json=payload) response.raise_for_status() response_json_data = response.json() logger.debug(f"EmsalApiClient: Raw API response from {endpoint}: {response_json_data}") api_response_parsed = EmsalApiResponse(**response_json_data) if api_response_parsed.data and api_response_parsed.data.data: for decision_item in api_response_parsed.data.data: if decision_item.id: decision_item.document_url = f"{self.BASE_URL}{self.DOCUMENT_ENDPOINT}?id={decision_item.id}" return api_response_parsed except httpx.RequestError as e: logger.error(f"EmsalApiClient: HTTP request error during Emsal search to {endpoint}: {e}") raise except Exception as e: logger.error(f"EmsalApiClient: Error processing or validating Emsal search response from {endpoint}: {e}") raise

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/saidsurucu/yargi-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server