# semantic_search/embedder.py
import logging
import os
from typing import List, Optional
import numpy as np
logger = logging.getLogger(__name__)
def is_openrouter_available() -> bool:
"""Check if OpenRouter API key is available."""
return bool(os.getenv("OPENROUTER_API_KEY"))
class OpenRouterEmbedder:
"""
Embedder using OpenRouter API with Google's Gemini Embedding model.
Requires OPENROUTER_API_KEY environment variable.
"""
def __init__(self):
"""
Initialize OpenRouter Embedder.
Raises:
ValueError: If OPENROUTER_API_KEY is not set
ImportError: If openai package is not installed
"""
api_key = os.getenv("OPENROUTER_API_KEY")
if not api_key:
raise ValueError("OPENROUTER_API_KEY environment variable is not set")
try:
from openai import OpenAI
except ImportError:
raise ImportError("openai package is required. Install with: pip install openai")
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
self.model = "google/gemini-embedding-001"
self.dimension = 3072
logger.info(f"OpenRouter Embedder initialized with model: {self.model}")
def encode_query(self, query: str, task: str = "search result") -> np.ndarray:
"""
Encode a search query.
Args:
query: The search query text
task: Task type for prompt template
Returns:
Numpy array of embeddings (3072 dimensions)
"""
# Apply query prompt template
text = f"task: {task} | query: {query}"
try:
response = self.client.embeddings.create(
model=self.model,
input=text,
encoding_format="float",
extra_headers={
"HTTP-Referer": "https://yargimcp.com",
"X-Title": "Yargi MCP Server",
}
)
embedding = np.array(response.data[0].embedding, dtype=np.float32)
# L2 normalize for cosine similarity
norm = np.linalg.norm(embedding)
if norm > 0:
embedding = embedding / norm
logger.debug(f"Encoded query: {query[:50]}... -> shape: {embedding.shape}")
return embedding
except Exception as e:
logger.error(f"Failed to encode query: {e}")
raise
def encode_documents(self, documents: List[str], titles: Optional[List[str]] = None) -> np.ndarray:
"""
Encode multiple documents with batch API call.
Args:
documents: List of document texts
titles: Optional list of document titles
Returns:
Numpy array of embeddings (N x 3072 dimensions)
"""
if not documents:
return np.array([])
# Apply document prompt template
texts = []
for i, doc in enumerate(documents):
title = titles[i] if titles and i < len(titles) else "none"
text = f"title: {title} | text: {doc}"
texts.append(text)
try:
response = self.client.embeddings.create(
model=self.model,
input=texts,
encoding_format="float",
extra_headers={
"HTTP-Referer": "https://yargimcp.com",
"X-Title": "Yargi MCP Server",
}
)
# Extract embeddings in order
embeddings = np.array(
[d.embedding for d in sorted(response.data, key=lambda x: x.index)],
dtype=np.float32
)
# L2 normalize each embedding for cosine similarity
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
embeddings = embeddings / (norms + 1e-8)
logger.info(f"Encoded {len(documents)} documents -> shape: {embeddings.shape}")
return embeddings
except Exception as e:
logger.error(f"Failed to encode documents: {e}")
raise
def compute_similarity(self, query_embedding: np.ndarray, document_embeddings: np.ndarray) -> np.ndarray:
"""
Compute cosine similarity between query and documents.
Args:
query_embedding: Query embedding (3072,)
document_embeddings: Document embeddings (N x 3072)
Returns:
Similarity scores (N,)
"""
# Ensure query is 2D for matrix multiplication
if len(query_embedding.shape) == 1:
query_embedding = query_embedding.reshape(1, -1)
# Compute cosine similarity (embeddings are already normalized)
similarities = np.dot(document_embeddings, query_embedding.T).squeeze()
return similarities