Skip to main content
Glama
models.R1.28 kB
#' Fit a linear model #' #' @param formula A formula for the model #' @param data A data frame containing the variables #' @return A fitted lm object #' @export fit_linear_model <- function(formula, data) { if (missing(formula) || missing(data)) { stop("Both formula and data are required") } model <- lm(formula, data = data) # Add some custom attributes attr(model, "created_by") <- "fit_linear_model" attr(model, "creation_time") <- Sys.time() return(model) } #' Plot data using ggplot2-style syntax #' #' @param data A data frame #' @param x_var Column name for x-axis #' @param y_var Column name for y-axis #' @return A plot object #' @export plot_data <- function(data, x_var, y_var) { if (!is.data.frame(data)) { stop("data must be a data frame") } if (!(x_var %in% names(data))) { stop(paste("Column", x_var, "not found in data")) } if (!(y_var %in% names(data))) { stop(paste("Column", y_var, "not found in data")) } # Create a simple base R plot plot(data[[x_var]], data[[y_var]], xlab = x_var, ylab = y_var, main = paste(y_var, "vs", x_var)) # Add a trend line abline(lm(data[[y_var]] ~ data[[x_var]]), col = "red") }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ryota-murakami/serena'

If you have feedback or need assistance with the MCP directory API, please join our Discord server