Skip to main content
Glama

runway_generateImage

Generate images from text prompts using AI, with optional reference images for precise control over visual elements and multiple aspect ratio options.

Instructions

Generate an image from a text prompt and optional reference images. Available ratios are 1920:1080, 1080:1920, 1024:1024, 1360:768, 1080:1080, 1168:880, 1440:1080, 1080:1440, 1808:768, 2112:912, 1280:720, 720:1280, 720:720, 960:720, 720:960, 1680:720. Use 1920:1080 by default. It also accepts reference images, in the form of either a url or a base64 encoded image. Each reference image has a tag, which is a string that refers to the image from the user prompt. For example, if the user prompt is "IMG_1 on a red background", and the reference image has the tag "IMG_1", the model will use that reference image to generate the image. The return of this function will contain a url to the generated image.

Input Schema

NameRequiredDescriptionDefault
promptTextYes
ratioYes
referenceImagesNo

Input Schema (JSON Schema)

{ "properties": { "promptText": { "type": "string" }, "ratio": { "type": "string" }, "referenceImages": { "items": { "additionalProperties": false, "properties": { "tag": { "type": "string" }, "uri": { "type": "string" } }, "required": [ "uri" ], "type": "object" }, "type": "array" } }, "required": [ "promptText", "ratio" ], "type": "object" }

Implementation Reference

  • The asynchronous handler function for the runway_generateImage tool. It invokes the Runway /text_to_image API endpoint asynchronously, waits for task completion, and returns a success message with the image URL or the task details.
    async ({ promptText, ratio, referenceImages }) => { const task = await callRunwayAsync("/text_to_image", { method: "POST", body: JSON.stringify({ model: "gen4_image", promptText, ratio, referenceImages, }), }); if (task.status === "SUCCEEDED") { return { content: [ { type: "text", text: `Here is the URL of the image: ${task.output[0]}. Return to the user, as a markdown link, the URL of the image and the prompt that was used to generate the image.`, }, ], }; } else { return { content: [{ type: "text", text: JSON.stringify(task) }] }; } }
  • Zod input schema for the tool: required promptText and ratio (strings), optional referenceImages (array of {uri: string, tag?: string}).
    { promptText: z.string(), ratio: z.string(), referenceImages: z .array(z.object({ uri: z.string(), tag: z.string().optional() })) .optional(), },
  • src/index.ts:100-138 (registration)
    Full registration of the 'runway_generateImage' tool via server.tool(), including the tool name, multi-line description, input schema, and inline handler function.
    server.tool( "runway_generateImage", `Generate an image from a text prompt and optional reference images. Available ratios are 1920:1080, 1080:1920, 1024:1024, 1360:768, 1080:1080, 1168:880, 1440:1080, 1080:1440, 1808:768, 2112:912, 1280:720, 720:1280, 720:720, 960:720, 720:960, 1680:720. Use 1920:1080 by default. It also accepts reference images, in the form of either a url or a base64 encoded image. Each reference image has a tag, which is a string that refers to the image from the user prompt. For example, if the user prompt is "IMG_1 on a red background", and the reference image has the tag "IMG_1", the model will use that reference image to generate the image. The return of this function will contain a url to the generated image.`, { promptText: z.string(), ratio: z.string(), referenceImages: z .array(z.object({ uri: z.string(), tag: z.string().optional() })) .optional(), }, async ({ promptText, ratio, referenceImages }) => { const task = await callRunwayAsync("/text_to_image", { method: "POST", body: JSON.stringify({ model: "gen4_image", promptText, ratio, referenceImages, }), }); if (task.status === "SUCCEEDED") { return { content: [ { type: "text", text: `Here is the URL of the image: ${task.output[0]}. Return to the user, as a markdown link, the URL of the image and the prompt that was used to generate the image.`, }, ], }; } else { return { content: [{ type: "text", text: JSON.stringify(task) }] }; } } );

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/runwayml/runway-api-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server