Skip to main content
Glama

MCP RSS

by ronnycoding
database.ts1.39 kB
import { DataSource } from 'typeorm'; import { Feed } from '../entities/Feed'; import { Article } from '../entities/Article'; import dotenv from 'dotenv'; // 确保环境变量已加载 dotenv.config(); // 创建数据库连接 export const AppDataSource = new DataSource({ type: 'postgres', host: process.env.DB_HOST || 'localhost', port: parseInt(process.env.DB_PORT || '5433'), username: process.env.DB_USER || process.env.DB_USERNAME || 'mcp_user', password: process.env.DB_PASSWORD || '123456', database: process.env.DB_NAME || process.env.DB_DATABASE || 'mcp_rss', entities: [Feed, Article], synchronize: true, logging: false }); // 初始化数据库连接 export async function initDatabase(): Promise<void> { try { // Initialize TypeORM connection await AppDataSource.initialize(); // Enable pgvector extension await AppDataSource.query('CREATE EXTENSION IF NOT EXISTS vector'); // Convert embedding column to vector type if it exists as text await AppDataSource.query(` ALTER TABLE article ALTER COLUMN embedding TYPE vector(1536) USING embedding::vector `).catch(() => { // If column doesn't exist or already vector type, ignore error }); // console.log('Database connection initialized'); } catch (error) { console.error('Database connection failed:', error); process.exit(1); } };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ronnycoding/my_mcp_rss'

If you have feedback or need assistance with the MCP directory API, please join our Discord server