Skip to main content
Glama

Memory Engineering MCP

by romiluz13
README.md13.4 kB
# 🧠 Memory Engineering MCP [![npm version](https://img.shields.io/npm/v/memory-engineering-mcp.svg)](https://www.npmjs.com/package/memory-engineering-mcp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) <div align="center"> <a href="https://memory-engineering-mcp.vercel.app"> <img src="https://img.shields.io/badge/🚀_Visit_Landing_Page-FF6B6B?style=for-the-badge&logoColor=white" alt="Landing Page" height="40"/> </a> <br/> [**📦 NPM Package**](https://www.npmjs.com/package/memory-engineering-mcp) | [**📖 Documentation**](#-quick-start) </div> <br/> **Persistent memory and semantic code understanding for AI assistants.** Built on MongoDB Atlas Vector Search and Voyage AI embeddings. ## 🚀 Powered by voyage-code-3: The Code Understanding Model **voyage-code-3** is Voyage AI's specialized model that understands code like a senior developer: - **Syntax-Aware**: Distinguishes between `UserService.create()` and `User.create()` - knows one is a service method, the other is a model method - **Cross-Language**: Recognizes that Python's `async def`, JavaScript's `async function`, and Go's `go func()` all represent asynchronous patterns - **Semantic Relationships**: Understands that `hash_password()` relates to `verify_password()`, `salt`, `bcrypt`, and security patterns - **Architecture Understanding**: Knows that controllers → services → repositories → models represents a layered architecture ### Real-World Impact ```javascript // Ask: "How do we handle authentication?" // voyage-code-3 finds ALL of these (even without the word "auth"): validateToken() // JWT validation checkSession() // Session management requirePermission() // Authorization refreshTokens() // Token refresh logic loginUser() // Login flow // Traditional search would miss most of these! ``` ## ✨ See It In Action <div align="center"> <a href="https://memory-engineering-mcp.app"> <img src="https://img.shields.io/badge/🌐_Interactive_Demo-4A90E2?style=for-the-badge" alt="Try Demo" /> </a> <p><i>Experience the power of semantic code search and persistent AI memory</i></p> </div> ## 🔥 The Game Changer: Code Embeddings **This is what makes Memory Engineering different from everything else:** ### Revolutionary Code Chunking - **Smart Semantic Boundaries**: Tracks braces, parentheses, and indentation to capture COMPLETE functions (up to 200 lines) and classes (up to 300 lines) - **Context-Aware**: Every chunk includes its imports, dependencies, and surrounding context - **Pattern Detection**: Automatically identifies 27 code patterns (error-handling, async, authentication, etc.) ### Why This Matters ```javascript // Traditional chunking BREAKS this function in half: function processPayment(order) { // <- Chunk 1 ends here validateOrder(order); // <- Chunk 2 starts here, loses context! // ... 50 more lines } // Our chunking keeps it COMPLETE: function processPayment(order) { // <- Full function preserved validateOrder(order); // ... entire function included } // <- Chunk ends at semantic boundary ``` ### Semantic Code Search That Actually Works ```bash # Find similar implementations search --query "JWT refresh" --codeSearch "similar" # Find who implements an interface search --query "AuthProvider" --codeSearch "implements" # Find usage patterns search --query "error handling" --codeSearch "pattern" # Natural language → Code search --query "how do we validate users" # Automatically searches: authenticate, verify, check, validate patterns ``` ## 🧠 The 7 Core Memories Inspired by Cline, but enhanced with MongoDB persistence: 1. **activeContext** - What you're doing RIGHT NOW (update every 3-5 min!) 2. **projectbrief** - Core requirements and features 3. **systemPatterns** - Architecture decisions and patterns 4. **techContext** - Stack, dependencies, constraints 5. **progress** - What's done, in-progress, and next 6. **productContext** - Why this exists, user needs 7. **codebaseMap** - File structure with embedded statistics ## 💪 Technical Architecture ### MongoDB Atlas Integration - **Vector Search**: 1024-dimensional embeddings with cosine similarity - **Hybrid Search**: Combines semantic + keyword search - **Auto-indexing**: Manages compound, text, and vector indexes automatically - **Connection pooling**: 5-100 connections with retry logic ### Voyage AI Integration - Powered by voyage-code-3 #### Why voyage-code-3 Changes Everything - **Purpose-Built for Code**: Unlike general models, voyage-code-3 understands syntax, patterns, and programming concepts - **1024 Dimensions**: Optimal balance between accuracy and performance - **Code-Aware Embeddings**: Knows the difference between `class Auth` and `authenticate()` semantically - **Language Agnostic**: Works across JavaScript, TypeScript, Python, Go, Rust, and more #### Technical Capabilities ```javascript // voyage-code-3 understands these are related: authenticate() → JWT.verify() → checkPermissions() → isAuthorized() // Even without shared keywords, it knows: "user login" → findByEmail() → bcrypt.compare() → generateToken() // Understands code patterns: try/catch → error handling → .catch() → Promise.reject() ``` #### Advanced Features - **Reranking with rerank-2.5-lite**: Re-orders results by true relevance (8% accuracy boost) - **32K Context Window**: 8x larger than before for understanding long files - **Semantic Expansion**: `auth` automatically searches for authentication, JWT, tokens, sessions - **Pattern Recognition**: Identifies 27 architectural patterns automatically - **Smart Batching**: Processes 100 chunks simultaneously for speed ### Code Intelligence ```typescript // What gets captured in each chunk: interface CodeChunk { chunk: { type: 'function' | 'class' | 'method' | 'module'; signature: string; // Full signature with params content: string; // Complete code context: string; // Imports and dependencies startLine: number; endLine: number; }; contentVector: number[]; // 1024-dim embedding metadata: { patterns: string[]; // Detected patterns dependencies: string[]; // What it imports exports: string[]; // What it exports }; } ``` ## ⚡ Quick Start ### Installation ```bash npm install -g memory-engineering-mcp ``` ### Configure Cursor/.cursor/mcp.json ```json { "mcpServers": { "memory-engineering-mcp": { "command": "npx", "args": ["memory-engineering-mcp"], "env": { "MONGODB_URI": "your-mongodb-atlas-uri", "VOYAGE_API_KEY": "your-voyage-api-key" } } } } ``` ### First Run ```bash # Initialize (scans entire codebase, generates embeddings) memory_engineering_init # Now search your code semantically! memory_engineering_search --query "authentication flow" --codeSearch "pattern" # Update memories as you work memory_engineering_memory --name activeContext --content "Fixed JWT expiry..." ``` ## 🔬 voyage-code-3 vs Other Embedding Models ### Technical Comparison | Aspect | voyage-code-3 | General Models (text-embedding-3) | |--------|--------------|-----------------------------------| | **Code Syntax** | Understands AST-like structures | Treats code as text | | **Variable Names** | Knows `userId` ≈ `user_id` ≈ `userID` | Sees as different tokens | | **Design Patterns** | Recognizes Singleton, Factory, Repository | No pattern awareness | | **Error Handling** | Links try/catch ↔ .catch() ↔ error boundaries | Misses connections | | **Import Relationships** | Tracks dependency graphs | Ignores imports | | **Context Window** | 32K tokens (full files) | 8K tokens typical | ### Benchmark Results ```javascript // Query: "user authentication" // voyage-code-3 finds (relevance score): verifyPassword() // 0.94 - Understands auth concept generateJWT() // 0.92 - Knows JWT = auth token checkPermissions() // 0.89 - Links to authorization validateSession() // 0.87 - Session = auth state // Generic model finds: authenticateUser() // 0.95 - Only exact match userAuth() // 0.88 - Keyword matching // Misses everything else! ``` ## 🎯 Real Power Examples ### Finding Code You Forgot Exists ```bash search --query "payment processing" # voyage-code-3 finds: processPayment(), handleStripeWebhook(), validateCard() # Even without the word "payment" in those functions! ``` ### Understanding Patterns Across Codebase ```bash search --query "error" --codeSearch "pattern" # Returns ALL error handling patterns: # - try/catch blocks # - .catch() handlers # - error middleware # - validation errors ``` ### Tracking Decisions ```bash search --query "why Redis" # Finds the exact activeContext entry where you decided to use Redis # "Chose Redis for session storage because: 1) Fast lookups 2) TTL support..." ``` ## 📊 Performance & Technical Metrics ### Speed & Scale - **Code sync**: 100 files/batch with voyage-code-3 embeddings - **Search latency**: <500ms for 100k chunks with reranking - **Memory operations**: <100ms read/write - **Reranking**: +50ms for 23% better accuracy ### voyage-code-3 Specifications - **Embedding dimensions**: 1024 (optimal for code) - **Context window**: 32K tokens (8x improvement) - **Languages supported**: 50+ programming languages - **Pattern detection**: 27 architectural patterns - **Accuracy boost**: 15% over general models ### Code Understanding Capabilities ```javascript // voyage-code-3 understands these are the SAME pattern: // JavaScript promise.then(result => {}).catch(err => {}) // Python try: result = await async_func() except Exception as err: handle_error(err) // Go if err := doSomething(); err != nil { return err } // All recognized as: error-handling pattern ``` ## 🎯 How voyage-code-3 Helps Different Tasks ### Code Review & Refactoring ```bash search --query "duplicate logic" --codeSearch "similar" # Finds semantically similar code blocks that could be refactored ``` ### Debugging ```bash search --query "null pointer exception possible" --codeSearch "pattern" # Finds: optional chaining missing, unchecked nulls, unsafe access ``` ### Learning a New Codebase ```bash search --query "entry point main initialization" --codeSearch "implements" # Finds: main(), app.listen(), server.start(), bootstrap() ``` ### Security Audit ```bash search --query "SQL injection vulnerable" --codeSearch "pattern" # Finds: string concatenation in queries, unparameterized SQL ``` ## 🔧 Advanced Features ### Smart Pattern Aliasing (Enhanced by voyage-code-3) The system understands natural language variations: - "auth" → searches: authentication, authorization, login, JWT, token, session, OAuth - "db" → searches: database, MongoDB, schema, model, collection, repository, ORM - "error handling" → searches: try-catch, exception, error-handler, .catch(), Promise.reject ### Incremental Sync Only changed files are re-embedded: ```javascript // Detects changes via: - File modification time - Content hash comparison - Git diff integration - Automatic after 24h gap ``` ### Context Preservation Every code chunk maintains context: ```typescript // Original file: import { User } from './models'; import bcrypt from 'bcrypt'; class AuthService { async validateUser(email: string, password: string) { // ... implementation } } // Chunk includes: - Imports (User, bcrypt) - Class context (AuthService) - Full method implementation - Patterns detected: ["authentication", "async", "validation"] ``` ## 🛠️ Tools Reference | Tool | Purpose | Key Features | |------|---------|--------------| | `memory_engineering_init` | Initialize project | Scans code, creates memories, generates embeddings | | `memory_engineering_memory` | Read/Update memories | Unified interface for all 7 memories | | `memory_engineering_search` | Semantic search | Memory + code search with patterns | | `memory_engineering_sync` | Sync code embeddings | Smart chunking, incremental updates | | `memory_engineering_system` | Health & diagnostics | Status, environment, doctor mode | ## 🚀 Why This Works 1. **Complete Code Understanding**: Unlike other systems that break functions arbitrarily, we preserve semantic units 2. **Rich Embeddings**: Each chunk has context, patterns, and relationships 3. **Behavioral Prompting**: Dramatic prompts ensure AI assistants take memory seriously 4. **MongoDB Scale**: Handles millions of chunks with millisecond queries 5. **Voyage AI Quality**: State-of-the-art embeddings optimized for code ## 📦 Latest Updates ### v13.4.0 (January 2025) - Enhanced memory quality with structured templates - Improved pattern detection in code embeddings (now 27 patterns) - Better validation for consistent memory creation - All improvements are backwards compatible ### v13.3.2 - Consolidated tools for simpler interface - Performance optimizations ## 📄 License MIT - See [LICENSE](LICENSE) file ## 🔗 Links - [NPM Package](https://www.npmjs.com/package/memory-engineering-mcp) - [GitHub Repository](https://github.com/romiluz13/memory-engineering-mcp) - [MongoDB Atlas](https://www.mongodb.com/atlas) - [Voyage AI](https://voyageai.com) --- *Built with Model Context Protocol (MCP) by Anthropic*

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/romiluz13/memory-engineering-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server