/**
* Explain Recommendation Tool
* SHAP/LIME explainability for AI projections
*/
import { BaseTool } from "./base-tool.js";
import type { MCPTool } from "../types/mcp.js";
import {
ExplainRecommendationInputSchema,
type ExplainRecommendationInput,
type ExplainRecommendationOutput,
} from "../types/tools.js";
export class ExplainRecommendationTool extends BaseTool {
definition: MCPTool = {
name: "explain_recommendation",
description:
"Get detailed explainability for AI projection decisions using SHAP values. Shows which features contributed most to a player's projection and why the model recommends them. Perfect for understanding the 'why' behind projections.",
inputSchema: {
type: "object",
properties: {
playerId: {
type: "string",
description: "Player ID to explain",
},
sport: {
type: "string",
enum: ["NBA", "NFL", "MLB", "NHL"],
description: "Sport context",
},
explainerType: {
type: "string",
enum: ["shap", "lime", "feature_importance"],
description: "Explainability method",
default: "shap",
},
includeVisualizations: {
type: "boolean",
description: "Include waterfall/force plots (base64 images)",
default: false,
},
},
required: ["playerId", "sport"],
},
};
async execute(args: any): Promise<ExplainRecommendationOutput> {
const input = ExplainRecommendationInputSchema.parse(args);
console.log(
`Explaining projection for player ${input.playerId} using ${input.explainerType}`
);
try {
// In production, this would:
// 1. Load the trained model
// 2. Get player features
// 3. Calculate SHAP values
// 4. Generate visualizations
const explanation = this.generateExplanation(input);
return explanation;
} catch (error) {
console.error("Error generating explanation:", error);
throw error;
}
}
/**
* Generate SHAP explanation (MVP: mock data)
* Production: Use actual SHAP library
*/
private generateExplanation(
input: ExplainRecommendationInput
): ExplainRecommendationOutput {
// Mock SHAP values for demonstration
const baseValue = 25.0; // Average projection
const prediction = 32.5; // This player's projection
const topFactors = [
{
feature: "recent_ppg",
value: 28.5,
impact: +4.2,
direction: "positive" as const,
humanReadable:
"Averaging 28.5 points per game over last 10 games (+4.2 fantasy points)",
},
{
feature: "vegas_total",
value: 225,
impact: +2.1,
direction: "positive" as const,
humanReadable:
"High Vegas total (225) suggests fast-paced game (+2.1 fantasy points)",
},
{
feature: "opponent_def_rating",
value: 118,
impact: +1.8,
direction: "positive" as const,
humanReadable:
"Facing weak defense (118 rating) (+1.8 fantasy points)",
},
{
feature: "home_away",
value: 1,
impact: +0.7,
direction: "positive" as const,
humanReadable: "Playing at home (+0.7 fantasy points)",
},
{
feature: "rest_days",
value: 1,
impact: -0.3,
direction: "negative" as const,
humanReadable: "Only 1 day of rest (-0.3 fantasy points)",
},
];
const reasoning = this.generateReasoningText(topFactors, baseValue, prediction);
const result: ExplainRecommendationOutput = {
playerId: input.playerId,
playerName: `Player ${input.playerId}`, // Would fetch real name
projectedPoints: prediction,
explanation: {
method: input.explainerType,
topFactors,
baseValue,
predictionValue: prediction,
reasoning,
},
confidence: 0.85,
generatedAt: new Date().toISOString(),
};
// Add visualizations if requested
if (input.includeVisualizations) {
result.visualizations = {
waterfallPlot: this.generateMockWaterfallPlot(),
forceplot: this.generateMockForcePlot(),
};
}
return result;
}
/**
* Generate human-readable reasoning
*/
private generateReasoningText(
factors: any[],
baseValue: number,
prediction: number
): string {
const delta = prediction - baseValue;
const topPositive = factors.filter((f) => f.direction === "positive");
const topNegative = factors.filter((f) => f.direction === "negative");
let reasoning = `This player's projection is ${delta > 0 ? "above" : "below"} the baseline by ${Math.abs(delta).toFixed(1)} fantasy points. `;
if (topPositive.length > 0) {
reasoning += `The main positive factors are: ${topPositive.map((f) => f.feature).join(", ")}. `;
}
if (topNegative.length > 0) {
reasoning += `However, ${topNegative.map((f) => f.feature).join(" and ")} work against this projection. `;
}
reasoning += `Overall, the model has ${Math.round((prediction / (baseValue + delta)) * 100)}% confidence in this projection.`;
return reasoning;
}
/**
* Generate mock waterfall plot (base64 image)
* Production: Use actual plotting library
*/
private generateMockWaterfallPlot(): string {
// This would be a real base64-encoded PNG
// For MVP, return a placeholder
return "";
}
/**
* Generate mock force plot (base64 image)
*/
private generateMockForcePlot(): string {
return "";
}
}