# 📘 SportIntel MCP - API Reference
Complete reference for all SportIntel MCP tools.
---
## Table of Contents
1. [get_player_projections](#get_player_projections)
2. [optimize_lineup](#optimize_lineup)
3. [get_live_odds](#get_live_odds)
4. [explain_recommendation](#explain_recommendation)
---
## get_player_projections
Get AI-powered DFS player projections with confidence scores and SHAP explainability.
### Input Schema
```typescript
{
sport: "NBA" | "NFL" | "MLB" | "NHL";
slate?: "main" | "early" | "afternoon" | "evening" | "showdown"; // default: "main"
date?: string; // ISO 8601 date, defaults to today
includeExplanations?: boolean; // default: true
minSalary?: number; // filter by minimum salary
maxSalary?: number; // filter by maximum salary
positions?: string[]; // filter by positions, e.g., ["PG", "SG"]
}
```
### Example Request
```json
{
"tool": "get_player_projections",
"arguments": {
"sport": "NBA",
"slate": "main",
"includeExplanations": true,
"minSalary": 7000
}
}
```
### Output Schema
```typescript
{
sport: Sport;
slate: SlateType;
date: string;
projections: Array<{
playerId: string;
playerName: string;
team: string;
position: Position;
salary: number;
projectedPoints: number;
floor: number; // Conservative estimate
ceiling: number; // Optimistic estimate
confidence: number; // 0-1 scale
value: number; // Points per $1K salary
ownership: number; // Estimated ownership %
explanation?: {
topFactors: Array<{
factor: string;
impact: number;
description: string;
}>;
reasoning: string;
shapValues?: Record<string, number>;
};
}>;
metadata: {
modelVersion: string;
lastTrained: string;
dataSourcesUsed: string[];
generatedAt: string;
};
}
```
### Example Response
```json
{
"sport": "NBA",
"slate": "main",
"date": "2025-01-25T00:00:00Z",
"projections": [
{
"playerId": "lbj23",
"playerName": "LeBron James",
"team": "LAL",
"position": "SF",
"salary": 9500,
"projectedPoints": 48.2,
"floor": 38.6,
"ceiling": 57.8,
"confidence": 0.89,
"value": 5.07,
"ownership": 32.5,
"explanation": {
"topFactors": [
{
"factor": "recent_ppg",
"impact": 6.2,
"description": "Averaging 32.1 PPG over last 5 games"
},
{
"factor": "vegas_total",
"impact": 3.1,
"description": "230.5 Vegas total suggests high-scoring game"
},
{
"factor": "opponent_def_rating",
"impact": 2.4,
"description": "Facing 28th-ranked defense"
}
],
"reasoning": "LeBron is projected above baseline due to elite recent performance, favorable game environment (high Vegas total), and weak opposing defense. Confidence is high given 10+ games of recent data.",
"shapValues": {
"recent_ppg": 6.2,
"vegas_total": 3.1,
"opponent_def_rating": 2.4,
"home_away": 0.7,
"rest_days": -0.3
}
}
}
],
"metadata": {
"modelVersion": "1.0.0",
"lastTrained": "2025-01-15T00:00:00Z",
"dataSourcesUsed": ["balldontlie", "odds-api", "vegas-lines"],
"generatedAt": "2025-01-25T18:30:00Z"
}
}
```
### Use Cases
- Get projections for entire slate before building lineups
- Filter high-value plays by salary range
- Understand why model recommends specific players
- Compare floor/ceiling for cash vs GPP strategy
---
## optimize_lineup
Generate optimal DFS lineups using linear programming and multi-objective optimization.
### Input Schema
```typescript
{
sport: "NBA" | "NFL" | "MLB" | "NHL";
projections: Array<{
playerId: string;
projectedPoints: number;
}>;
salaryCap: number; // e.g., 50000 for DraftKings
lineupCount?: number; // 1-150, default: 10
strategy?: "cash" | "tournament" | "balanced"; // default: "balanced"
constraints?: {
maxPlayersPerTeam?: number;
requiredPlayers?: string[]; // Player IDs to lock in
excludedPlayers?: string[]; // Player IDs to exclude
preferStacks?: boolean; // Prefer game/positional stacks
minUniqueOwnership?: number; // For GPP differentiation
};
}
```
### Example Request
```json
{
"tool": "optimize_lineup",
"arguments": {
"sport": "NBA",
"projections": [
{"playerId": "lbj23", "projectedPoints": 48.2},
{"playerId": "sc30", "projectedPoints": 45.1}
],
"salaryCap": 50000,
"lineupCount": 5,
"strategy": "tournament",
"constraints": {
"maxPlayersPerTeam": 3,
"requiredPlayers": ["lbj23"],
"preferStacks": true
}
}
}
```
### Output Schema
```typescript
{
lineups: Array<{
rank: number;
players: Array<{
playerId: string;
playerName: string;
position: Position;
salary: number;
projectedPoints: number;
}>;
totalSalary: number;
salaryCap: number;
salaryRemaining: number;
projectedPoints: number;
expectedValue: number; // Points per $1K
riskScore: number; // 0-100, lower = safer
estimatedOwnership: number; // Average ownership %
stacks: Array<{
type: string; // "game", "qb-wr", "rb-dst"
players: string[];
}>;
}>;
optimizationStats: {
strategy: string;
uniquePlayersUsed: number;
averageOwnership: number;
generatedAt: string;
};
}
```
### Example Response
```json
{
"lineups": [
{
"rank": 1,
"players": [
{
"playerId": "lbj23",
"playerName": "LeBron James",
"position": "SF",
"salary": 9500,
"projectedPoints": 48.2
},
{
"playerId": "sc30",
"playerName": "Stephen Curry",
"position": "PG",
"salary": 9300,
"projectedPoints": 45.1
}
// ... 6 more players
],
"totalSalary": 49800,
"salaryCap": 50000,
"salaryRemaining": 200,
"projectedPoints": 283.5,
"expectedValue": 5.69,
"riskScore": 45,
"estimatedOwnership": 18.3,
"stacks": [
{
"type": "game",
"players": ["LeBron James", "Anthony Davis", "D'Angelo Russell"]
}
]
}
],
"optimizationStats": {
"strategy": "tournament",
"uniquePlayersUsed": 32,
"averageOwnership": 15.7,
"generatedAt": "2025-01-25T18:35:00Z"
}
}
```
### Strategies
- **Cash**: Minimizes risk, prioritizes floor projections, targets ~20% ownership
- **Tournament**: Maximizes upside, prioritizes ceiling projections, seeks low ownership
- **Balanced**: Mix of both, good for small-field GPPs
### Use Cases
- Generate mass multi-entry lineups for GPPs (up to 150)
- Lock in specific players you believe in
- Build correlated stacks for showdown slates
- Diversify across multiple games/teams
---
## get_live_odds
Get real-time betting odds from multiple sportsbooks with line movement tracking.
### Input Schema
```typescript
{
sport: "NBA" | "NFL" | "MLB" | "NHL";
gameIds?: string[]; // Specific games, defaults to all upcoming
markets?: Array<"spreads" | "totals" | "h2h" | "player_props">; // default: ["spreads", "totals"]
bookmakers?: string[]; // Filter by sportsbook, e.g., ["fanduel", "draftkings"]
}
```
### Example Request
```json
{
"tool": "get_live_odds",
"arguments": {
"sport": "NBA",
"markets": ["spreads", "totals", "h2h"]
}
}
```
### Output Schema
```typescript
{
sport: Sport;
games: Array<{
gameId: string;
homeTeam: string;
awayTeam: string;
gameTime: string;
bookmakers: Array<{
name: string;
markets: Array<{
type: "spreads" | "totals" | "h2h" | "player_props";
outcomes: Array<{
name: string;
price: number; // American odds
point?: number; // Spread/total line
}>;
lastUpdate: string;
}>;
}>;
bestOdds: {
homeSpread?: { line: number; price: number; bookmaker: string };
awaySpread?: { line: number; price: number; bookmaker: string };
overTotal?: { line: number; price: number; bookmaker: string };
underTotal?: { line: number; price: number; bookmaker: string };
};
}>;
metadata: {
fetchedAt: string;
dataSource: string;
marketsCovered: string[];
};
}
```
### Example Response
```json
{
"sport": "NBA",
"games": [
{
"gameId": "lal_gsw_20250125",
"homeTeam": "LAL",
"awayTeam": "GSW",
"gameTime": "2025-01-25T22:00:00Z",
"bookmakers": [
{
"name": "DraftKings",
"markets": [
{
"type": "spreads",
"outcomes": [
{"name": "LAL", "price": -110, "point": -3.5},
{"name": "GSW", "price": -110, "point": 3.5}
],
"lastUpdate": "2025-01-25T18:30:00Z"
},
{
"type": "totals",
"outcomes": [
{"name": "Over", "price": -108, "point": 230.5},
{"name": "Under", "price": -112, "point": 230.5}
],
"lastUpdate": "2025-01-25T18:30:00Z"
}
]
},
{
"name": "FanDuel",
"markets": [
{
"type": "spreads",
"outcomes": [
{"name": "LAL", "price": -108, "point": -3.5},
{"name": "GSW", "price": -112, "point": 3.5}
],
"lastUpdate": "2025-01-25T18:32:00Z"
}
]
}
],
"bestOdds": {
"homeSpread": {"line": -3.5, "price": -108, "bookmaker": "FanDuel"},
"awaySpread": {"line": 3.5, "price": -110, "bookmaker": "DraftKings"},
"overTotal": {"line": 230.5, "price": -108, "bookmaker": "DraftKings"},
"underTotal": {"line": 230.5, "price": -112, "bookmaker": "DraftKings"}
}
}
],
"metadata": {
"fetchedAt": "2025-01-25T18:35:00Z",
"dataSource": "the-odds-api",
"marketsCovered": ["spreads", "totals", "h2h"]
}
}
```
### Use Cases
- Compare odds across sportsbooks to find best value
- Monitor line movements before placing bets
- Identify games with high Vegas totals for DFS (pace = more fantasy points)
- Find +EV betting opportunities
---
## explain_recommendation
Get detailed SHAP/LIME explanations for AI projection decisions.
### Input Schema
```typescript
{
playerId: string;
sport: "NBA" | "NFL" | "MLB" | "NHL";
explainerType?: "shap" | "lime" | "feature_importance"; // default: "shap"
includeVisualizations?: boolean; // default: false
}
```
### Example Request
```json
{
"tool": "explain_recommendation",
"arguments": {
"playerId": "lbj23",
"sport": "NBA",
"explainerType": "shap",
"includeVisualizations": true
}
}
```
### Output Schema
```typescript
{
playerId: string;
playerName: string;
projectedPoints: number;
explanation: {
method: "shap" | "lime" | "feature_importance";
topFactors: Array<{
feature: string;
value: number; // Actual feature value
impact: number; // SHAP value (contribution to prediction)
direction: "positive" | "negative";
humanReadable: string;
}>;
baseValue: number; // Average prediction
predictionValue: number; // This player's prediction
reasoning: string;
};
visualizations?: {
waterfallPlot?: string; // Base64 PNG
forceplot?: string; // Base64 PNG
};
confidence: number;
generatedAt: string;
}
```
### Example Response
```json
{
"playerId": "lbj23",
"playerName": "LeBron James",
"projectedPoints": 48.2,
"explanation": {
"method": "shap",
"topFactors": [
{
"feature": "recent_ppg",
"value": 32.1,
"impact": 6.2,
"direction": "positive",
"humanReadable": "Recent scoring (32.1 PPG) adds +6.2 fantasy points"
},
{
"feature": "vegas_total",
"value": 230.5,
"impact": 3.1,
"direction": "positive",
"humanReadable": "High Vegas total (230.5) suggests fast pace, adds +3.1 fantasy points"
},
{
"feature": "opponent_def_rating",
"value": 118.2,
"impact": 2.4,
"direction": "positive",
"humanReadable": "Weak opponent defense (118.2 rating) adds +2.4 fantasy points"
},
{
"feature": "home_away",
"value": 1,
"impact": 0.7,
"direction": "positive",
"humanReadable": "Home court advantage adds +0.7 fantasy points"
},
{
"feature": "rest_days",
"value": 1,
"impact": -0.3,
"direction": "negative",
"humanReadable": "Back-to-back game reduces projection by -0.3 fantasy points"
}
],
"baseValue": 35.1,
"predictionValue": 48.2,
"reasoning": "LeBron's projection is 13.1 points above the baseline (35.1 FP). The main drivers are: (1) exceptional recent scoring performance averaging 32.1 PPG, (2) a high Vegas total indicating a fast-paced, high-scoring game environment, and (3) facing a weak defensive opponent ranked 28th in defensive rating. The only negative factor is limited rest with back-to-back games, but this is outweighed by the positive factors. The model has 89% confidence in this projection based on 10+ games of recent data."
},
"visualizations": {
"waterfallPlot": "...",
"forceplot": "..."
},
"confidence": 0.89,
"generatedAt": "2025-01-25T18:40:00Z"
}
```
### Explainer Methods
- **SHAP**: Most accurate, shows exact feature contributions, slower
- **LIME**: Fast approximation, good for real-time use
- **Feature Importance**: Simplest, shows average feature importance across all predictions
### Use Cases
- Understand *why* the model likes a player
- Validate projections against your own analysis
- Learn which features matter most for different matchups
- Build trust in AI recommendations through transparency
---
## Error Handling
All tools return errors in this format:
```json
{
"error": "Error message here",
"tool": "tool_name",
"arguments": { /* input that caused error */ },
"timestamp": "2025-01-25T18:45:00Z"
}
```
### Common Errors
| Error | Cause | Solution |
|-------|-------|----------|
| `Rate limit exceeded` | Too many API calls | Enable caching, wait for reset, or upgrade plan |
| `Invalid API key` | Incorrect Odds API key | Verify key in config |
| `No games found` | Off-season or wrong date | Check date, try different sport |
| `Insufficient data` | Player hasn't played recently | Use different player or lower confidence threshold |
---
## Rate Limits
- **Odds API**: 500 requests/hour (free), 10K requests/hour (pro $25/mo)
- **BallDontLie**: 60 requests/minute
- **Caching**: 5-minute TTL reduces API usage by ~80%
---
## Next Steps
- [Quick Start Guide](./quickstart.md) - Set up with Claude Desktop
- [Examples](./examples/) - Advanced use cases
- [GitHub](https://github.com/roizenlabs/sportintel-mcp) - Source code