llm.logs•8.76 kB
python mcp-client.py
Starting main execution...
Establishing connection to MCP server...
Connection established, creating session...
Session created, initializing...
Requesting tool list...
[04/03/25 21:21:07] INFO Processing request of type ListToolsRequest server.py:534
Successfully retrieved 22 tools
Creating system prompt...
Number of tools: 22
1. add(a: integer, b: integer) - Add two numbers
2. add_list(l: array) - Add all numbers in a list
3. subtract(a: integer, b: integer) - Subtract two numbers
4. multiply(a: integer, b: integer) - Multiply two numbers
5. divide(a: integer, b: integer) - Divide two numbers
6. power(a: integer, b: integer) - Power of two numbers
7. sqrt(a: integer) - Square root of a number
8. cbrt(a: integer) - Cube root of a number
9. factorial(a: integer) - factorial of a number
10. log(a: integer) - log of a number
11. remainder(a: integer, b: integer) - remainder of two numbers divison
12. sin(a: integer) - sin of a number
13. cos(a: integer) - cos of a number
14. tan(a: integer) - tan of a number
15. mine(a: integer, b: integer) - special mining tool
16. create_thumbnail(image_path: string) - Create a thumbnail from an image
17. strings_to_chars_to_int(string: string) - Return the ASCII values of the characters in a word
18. int_list_to_exponential_sum(int_list: array) - Return sum of exponentials of numbers in a list
19. fibonacci_numbers(n: integer) - Return the first n Fibonacci Numbers
20. mac_open_keynote() - Open Keynote on macOS and create a new document.
21. mac_draw_rectangle() - Draw a rectangle in Keynote on macOS from (x1,y1) to (x2,y2). Keynote must be open before calling this tool.
22. mac_add_text_in_keynote(text: string) - Add text in Keynote on macOS inside a rectangle shape. Keynote must be open and rectangle must be drawn before calling this tool.
Successfully created tools description
Created system prompt...
Starting iteration loop...
--- Iteration 1 ---
Preparing to generate LLM response...
Starting LLM generation...
LLM generation completed
LLM Response: FUNCTION_CALL: strings_to_chars_to_int|INDIA
DEBUG: Raw function info: strings_to_chars_to_int|INDIA
DEBUG: Split parts: ['strings_to_chars_to_int', 'INDIA']
DEBUG: Function name: strings_to_chars_to_int
DEBUG: Raw parameters: ['INDIA']
DEBUG: Found tool: strings_to_chars_to_int
DEBUG: Tool schema: {'properties': {'string': {'title': 'String', 'type': 'string'}}, 'required': ['string'], 'title': 'strings_to_chars_to_intArguments', 'type': 'object'}
DEBUG: Schema properties: {'string': {'title': 'String', 'type': 'string'}}
DEBUG: Converting parameter string with value INDIA to type string
DEBUG: Final arguments: {'string': 'INDIA'}
DEBUG: Calling tool strings_to_chars_to_int
INFO Processing request of type CallToolRequest server.py:534
DEBUG: Raw result: meta=None content=[TextContent(type='text', text='73', annotations=None), TextContent(type='text', text='78', annotations=None), TextContent(type='text', text='68', annotations=None), TextContent(type='text', text='73', annotations=None), TextContent(type='text', text='65', annotations=None)] isError=False
DEBUG: Result has content attribute
DEBUG: Final iteration result: ['73', '78', '68', '73', '65']
Iteration_result: ['73', '78', '68', '73', '65']
--- Iteration 2 ---
Preparing to generate LLM response...
Starting LLM generation...
LLM generation completed
LLM Response: FUNCTION_CALL: int_list_to_exponential_sum|[73, 78, 68, 73, 65]
DEBUG: Raw function info: int_list_to_exponential_sum|[73, 78, 68, 73, 65]
DEBUG: Split parts: ['int_list_to_exponential_sum', '[73, 78, 68, 73, 65]']
DEBUG: Function name: int_list_to_exponential_sum
DEBUG: Raw parameters: ['[73, 78, 68, 73, 65]']
DEBUG: Found tool: int_list_to_exponential_sum
DEBUG: Tool schema: {'properties': {'int_list': {'items': {}, 'title': 'Int List', 'type': 'array'}}, 'required': ['int_list'], 'title': 'int_list_to_exponential_sumArguments', 'type': 'object'}
DEBUG: Schema properties: {'int_list': {'items': {}, 'title': 'Int List', 'type': 'array'}}
DEBUG: Converting parameter int_list with value [73, 78, 68, 73, 65] to type array
DEBUG: Final arguments: {'int_list': [73, 78, 68, 73, 65]}
DEBUG: Calling tool int_list_to_exponential_sum
[04/03/25 21:21:08] INFO Processing request of type CallToolRequest server.py:534
DEBUG: Raw result: meta=None content=[TextContent(type='text', text='7.59982224609308e+33', annotations=None)] isError=False
DEBUG: Result has content attribute
DEBUG: Final iteration result: ['7.59982224609308e+33']
Iteration_result: ['7.59982224609308e+33']
--- Iteration 3 ---
Preparing to generate LLM response...
Starting LLM generation...
LLM generation completed
LLM Response: FUNCTION_CALL: mac_open_keynote
DEBUG: Raw function info: mac_open_keynote
DEBUG: Split parts: ['mac_open_keynote']
DEBUG: Function name: mac_open_keynote
DEBUG: Raw parameters: []
DEBUG: Found tool: mac_open_keynote
DEBUG: Tool schema: {'properties': {}, 'title': 'mac_open_keynoteArguments', 'type': 'object'}
DEBUG: Schema properties: {}
DEBUG: Final arguments: {}
DEBUG: Calling tool mac_open_keynote
INFO Processing request of type CallToolRequest server.py:534
DEBUG: Raw result: meta=None content=[TextContent(type='text', text='{"content": [{"type": "text", "text": "Keynote opened successfully with a new document"}]}', annotations=None)] isError=False
DEBUG: Result has content attribute
DEBUG: Final iteration result: ['{"content": [{"type": "text", "text": "Keynote opened successfully with a new document"}]}']
Iteration_result: ['{"content": [{"type": "text", "text": "Keynote opened successfully with a new document"}]}']
--- Iteration 4 ---
Preparing to generate LLM response...
Starting LLM generation...
LLM generation completed
LLM Response: FUNCTION_CALL: mac_draw_rectangle
DEBUG: Raw function info: mac_draw_rectangle
DEBUG: Split parts: ['mac_draw_rectangle']
DEBUG: Function name: mac_draw_rectangle
DEBUG: Raw parameters: []
DEBUG: Found tool: mac_draw_rectangle
DEBUG: Tool schema: {'properties': {}, 'title': 'mac_draw_rectangleArguments', 'type': 'object'}
DEBUG: Schema properties: {}
DEBUG: Final arguments: {}
DEBUG: Calling tool mac_draw_rectangle
[04/03/25 21:21:13] INFO Processing request of type CallToolRequest server.py:534
DEBUG: Raw result: meta=None content=[TextContent(type='text', text='{"content": [{"type": "text", "text": "Rectangle drawn in Keynote from (780,380) to (1140,700)", "annotations": null}]}', annotations=None)] isError=False
DEBUG: Result has content attribute
DEBUG: Final iteration result: ['{"content": [{"type": "text", "text": "Rectangle drawn in Keynote from (780,380) to (1140,700)", "annotations": null}]}']
Iteration_result: ['{"content": [{"type": "text", "text": "Rectangle drawn in Keynote from (780,380) to (1140,700)", "annotations": null}]}']
--- Iteration 5 ---
Preparing to generate LLM response...
Starting LLM generation...
LLM generation completed
LLM Response: FUNCTION_CALL: mac_add_text_in_keynote|7.59982224609308e+33
DEBUG: Raw function info: mac_add_text_in_keynote|7.59982224609308e+33
DEBUG: Split parts: ['mac_add_text_in_keynote', '7.59982224609308e+33']
DEBUG: Function name: mac_add_text_in_keynote
DEBUG: Raw parameters: ['7.59982224609308e+33']
DEBUG: Found tool: mac_add_text_in_keynote
DEBUG: Tool schema: {'properties': {'text': {'title': 'Text', 'type': 'string'}}, 'required': ['text'], 'title': 'mac_add_text_in_keynoteArguments', 'type': 'object'}
DEBUG: Schema properties: {'text': {'title': 'Text', 'type': 'string'}}
DEBUG: Converting parameter text with value 7.59982224609308e+33 to type string
DEBUG: Final arguments: {'text': '7.59982224609308e+33'}
DEBUG: Calling tool mac_add_text_in_keynote
[04/03/25 21:21:15] INFO Processing request of type CallToolRequest server.py:534
DEBUG: Raw result: meta=None content=[TextContent(type='text', text='{"content": [{"type": "text", "text": "Text \'7.59982224609308e+33\' added successfully to Keynote", "annotations": null}]}', annotations=None)] isError=False
DEBUG: Result has content attribute
DEBUG: Final iteration result: ['{"content": [{"type": "text", "text": "Text \'7.59982224609308e+33\' added successfully to Keynote", "annotations": null}]}']
Iteration_result: ['{"content": [{"type": "text", "text": "Text \'7.59982224609308e+33\' added successfully to Keynote", "annotations": null}]}']
--- Iteration 6 ---
Preparing to generate LLM response...
Starting LLM generation...
LLM generation completed
LLM Response: FINAL_ANSWER: [7.59982224609308e+33]