Skip to main content
Glama

Customer Registration MCP Server

by rodrigoai
CHATBOT_QUICKSTART.md5.36 kB
# Chatbot Quick Start Guide This guide will help you get the AI chatbot up and running quickly. ## Prerequisites - Node.js 18+ - Yarn package manager - OpenAI API key - Customer API credentials (host and token) ## Setup in 5 Minutes ### 1. Install Dependencies ```bash yarn install ``` ### 2. Configure Environment ```bash # Copy the example file cp .env.example .env # Edit .env and add your credentials nano .env # or use your preferred editor ``` Required values in `.env`: - `OPENAI_API_KEY` - Your OpenAI API key - `CUSTOMER_API_HOST` - Your customer API base URL - `CUSTOMER_API_TOKEN` - Your API bearer token - `AGENT_TONE` - Chatbot personality (e.g., "Professional, helpful, and efficient") ### 3. Build the Project ```bash yarn build ``` ### 4. Start the Chatbot Server **Development (with auto-reload):** ```bash yarn chatbot:dev ``` **Production:** ```bash yarn chatbot:start ``` The server will start on `http://localhost:3000` (or your configured port). ## Test the Chatbot ### Option 1: Using curl ```bash curl -X POST http://localhost:3000/api/chat \ -H "Content-Type: application/json" \ -d '{ "message": "Hello! Can you help me register a customer?" }' ``` ### Option 2: Using the Test Script ```bash ./test-chatbot.sh ``` This script runs multiple test scenarios including: - Health check - Simple conversation - Customer registration - Multi-turn conversation ## Customizing the Agent Tone The chatbot's personality is controlled by the `AGENT_TONE` environment variable. Try different styles: **Professional:** ```env AGENT_TONE=Professional, helpful, and efficient ``` **Friendly:** ```env AGENT_TONE=Friendly, enthusiastic, and encouraging ``` **Witty:** ```env AGENT_TONE=Witty, clever, and engaging ``` **Formal:** ```env AGENT_TONE=Formal, precise, and business-like ``` After changing the tone, restart the chatbot server to apply changes. ## API Endpoints Overview ### POST /api/chat Main chatbot endpoint. Send messages and receive responses. **Request:** ```json { "message": "Your message here", "context": { "optional": "context data" } } ``` **Response:** ```json { "reply": "Chatbot response", "actions": [ { "tool": "createCustomer", "input": {...}, "result": {...} } ] } ``` ### POST /api/chat/reset Reset conversation history (useful for testing or starting fresh). ### GET /health Health check endpoint. ## Example Conversations ### Simple Registration **Input:** ```json { "message": "Register: John Doe, john@example.com, 555-1234" } ``` **Output:** ```json { "reply": "I've successfully registered John Doe! Customer ID: 12345", "actions": [...] } ``` ### Multi-turn Conversation **Message 1:** ``` "I need to add a new customer" ``` **Response 1:** ``` "I'd be happy to help! I'll need the customer's name, email, and phone number." ``` **Message 2:** ``` "Name is Jane Smith, email jane@smith.com, phone 555-9999" ``` **Response 2:** ``` "Perfect! I've registered Jane Smith. Customer ID: 67890" ``` ## Troubleshooting ### "OPENAI_API_KEY environment variable is required" **Solution:** Add your OpenAI API key to the `.env` file: ```env OPENAI_API_KEY=sk-your-actual-api-key-here ``` ### "MCP request timeout" or "Failed to initialize MCP client" **Solution:** 1. Ensure the project is built: `yarn build` 2. Check that `build/index.js` exists 3. Verify your customer API credentials are correct ### OpenAI API Rate Limit Errors **Solution:** 1. Check your OpenAI account has available credits 2. Ensure you have access to `gpt-4o-mini` model 3. Consider implementing rate limiting in your application ### Customer API Returns Errors **Solution:** 1. Verify `CUSTOMER_API_HOST` is correct 2. Check that `CUSTOMER_API_TOKEN` is valid 3. Set `NODE_ENV=development` for detailed error logs 4. Review the API documentation for required fields ## Architecture ``` ┌──────────┐ ┌─────────────┐ ┌─────────────┐ │ Client │ ──HTTP─→│ Chatbot │ ──stdio→│ MCP Server │ │ │ │ (Express) │ │ │ └──────────┘ └─────────────┘ └─────────────┘ │ │ ↓ ↓ ┌──────────┐ ┌──────────┐ │ OpenAI │ │ Customer │ │ GPT-4o │ │ API │ │ mini │ │ │ └──────────┘ └──────────┘ ``` ## Next Steps - Integrate the chatbot with your frontend application - Add authentication/authorization to the REST API - Implement conversation persistence (database) - Add more MCP tools beyond `createCustomer` - Set up monitoring and logging - Deploy to production (AWS, GCP, Azure, etc.) ## Support For issues or questions: 1. Check the main README.md 2. Review the WARP.md project guide 3. Examine logs when `NODE_ENV=development` ## License MIT

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rodrigoai/mcpNova'

If you have feedback or need assistance with the MCP directory API, please join our Discord server